
Reporting, COM Interop, Upsizing, Deployment and more…

 Use Team System
 with VFP!

Sedna: Beyond
VFP 9VFP 9

 LINQ: You’ll
Query Almost
Anything in .NET

 Use the “My”
 Namespace in Sedna!

 Web Services and WCF
 with VFP and .NET

 The New and Improved
 Data Explorer

Volume 4 / Issue 1

Se
dn

a

Con
ten

t!

Features
 5 Leveraging Sedna Reporting

Bo takes you on a whirlwind tour of Senda’s reporting
enhancements.
Bo Durban

 8 The Missing LINQ
Imagine being able to query almost anything that has
structure—that’s what Language Integrated Query (LINQ)
will offer to C# 3.0 and Visual Basic 9.0 developers.
Markus Egger

12 From VFP to .NET
So you’re thinking about moving a Visual FoxPro
application to .NET. Where will the pain points be?
How do you evaluate your options? Mike has years of
experience doing just this and offers an overview and
some great suggestions.
Mike Yeager

18 Upsizing Simplified
Using Visual FoxPro’s Upsizing Wizard in the past and has
not always produced spectacular results. Wait until you see
how great Sedna’s Upsizing Wizard will make this process.
Rick Schummer

24 Visual FoxPro Web Services Revisited
If you’ve struggled with getting your Visual FoxPro
applications to communicate with today’s fairly robust Web
services, this article is for you. It still isn’t easy, but Rick
walks you though how to do it.
Rick Strahl

28 Welcome to the Future of Deployment
Visual FoxPro applications can benefi t from ClickOnce
technologies. Craig shows you how it works. Soon you’ll be
using ClickOnce to deploy your next application updates!
Craig Boyd

30 The My Namespace in Sedna
Sedna will offer the same great fl exibility (and reduced
typing) that Visual Basic 2005 developers are enjoying with
the My namespace. Learn more about it from Doug.
Doug Hennig

38 The Baker’s Dozen:
13 Productivity Tips for Moving
from VFP to .NET
So you’re exploring .NET. What are the some of the most
critical things you need to discover in .NET that you know
how to do in Visual FoxPro? Kevin explains…
Kevin S. Goff

40 Integrating VFP into VSTS Team Projects
Microsoft developed some very powerful technologies
to help teams of developers work better together. Visual
Studio Team System is extensible so that Visual FoxPro
developers can tap into it too.
John M. Miller

42 COM Interop Over Easy
.NET and COM haven’t always been easy for developers
to use in an application but some new tools in Sedna will
make it easier for Visual FoxPro developers to do just that.
Craig Boyd

44 The New and Improved Data Explorer
Visual FoxPro 9.0 introduced the Data Explorer to help
Visual FoxPro developers work with different data sources.
Sedna will extend the Data Explorer and offer Visual
FoxPro developers even better options.
Rick Schummer

Departments
11 Advertisers Index

46 Code Compilers

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay US $44.99. Payments should be made in US dollars drawn on a US bank.
American Express, MasterCard, Visa, and Discover credit cards are accepted. Bill me option is available only for US subscriptions. Back issues are available. For
subscription information, send e-mail to subscriptions@code-magazine.com or contact customer service at 832-717-4445 ext 10.

Subscribe online at www.code-magazine.com

CoDe Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive., Suite 300, Spring,
TX 77379. POSTMASTER: Send address changes to CoDe Component Developer Magazine, 6605 Cypresswood Drive., Suite 300, Spring, TX 77379.

TA
B

LE
 O

F
C

O
N

TE
N

TS

3Table of Contentswww.code-magazine.com

4 www.code-magazine.com

This special CoDe Focus issue for Visual FoxPro
covers many of the new features that I showed
in detail, including things like My, Net4COM,

the Upsizing Wizard and others. My presentation
also covered some features that just didn’t fi t into
this magazine—like DDEX. So I thought I’d take the
opportunity to give one of my favorite features a
quick overview.

DDEX is part of the Visual Studio Software De-
veloper Kit (in other words, one of the ways of ex-
tending Visual Studio). It allows Visual Studio to
“understand” a data source. Microsoft is creating a
DDEX provider for Visual FoxPro, allowing Visual
Studio to understand all of the extended properties
of VFP. In simpler terms, it allows you to see the
DBGetProp() data of your database as well as your
stored procs while in Visual Studio. Why is this im-
portant? Well, it lets Visual Studio’s wizards and
IDE perform better against VFP data—meaning
that if you use Visual Studio you’ll be able to more
easily work with your existing information.

The hallmark of Sedna is connectivity. Whether
it’s connectivity to your data thru Sedna’s report-
ing enhancements; to SQL Server thru Sedna’s
Data Explorer and upsizing classes and wizard;
to .NET via Net4COM and My; to Visual Studio
via DDEX or the Interop Forms Toolkit; to Win-
dows Vista via our toolkit and added support; or to
the Community via CodePlex and the VFP exten-
sions in the projects there; Sedna will focus hard
on making sure that VFP works really well in the
larger world.

Speaking of community, I’m really glad that we
could work with the folks at CoDe Magazine to
have some of the various community people write
sidebars about their projects. As I’ve been show-
ing around the world, some great enhancements
to VFP are happening through the community at
www.codeplex.com—Microsoft’s site for commu-
nity-driven shared source application. I’ve really
enjoyed showing people things like classes that
give access to GDI+, an Outlook control written
in VFP—and the fact that they’re available to any-
one—and even better, that Microsoft has enabled
the developers of these projects to access a Visual
Studio Team Foundation Server from VFP to host
their applications and provide version control, wish
lists, and forums. We’re breaking physical location

barriers and allowing folks in South American to
collaborate with those in Europe, the U.S.A., and
elsewhere. Pretty awesome.

I hope you like what’s in Sedna—and I think that
the articles in this issue will give you a great idea of
some of the things that are coming with its release.

Welcome!
Welcome to the third Fox Focus issue!
As I write this (publishing deadlines being what they are) I’ve recently returned
from a trip to Europe where I spoke at three different Visual FoxPro conferences in
Germany, Amsterdam, and France. I showed off many of the new features coming in
Sedna as well as a number of the enhancements being created by the community using
the awesome extensibility built into VFP.O

N
LI

N
E

Q
U

IC
K

 I
D

 0
7

0
3

0
1

2

Welcome

Yair Alan Griver
Yair Alan Griver is the architect
for the Microsoft.com community
properties. As architect, he
is responsible for creating a
coherent underlying platform for
properties that include blogs.
msdn.com, forums.msdn.com,
GotDotNet, chats and CodePlex.
In addition to MSCOM architect,
Alan is also responsible for
the continued development
of Visual FoxPro. Prior to the
architect role, Alan was Group
Manager for the Visual Studio
Data group. As Group Manager,
Alan’s teams produced the tools
used inside of Visual Studio
.NET, Office and SQL Server
that surface data capabilities,
as well as Visual FoxPro. Prior
to this position, Alan was a
Lead Program Manager and
Community Evangelist for Visual
Basic .NET, driving community
interests into Visual Basic
.NET. Before joining Microsoft,
Alan was Chief Information
Officer at GoAmerica, a publicly
traded telecommunications
(wireless internet) company,
and co-founder and CIO of
Flash Creative Management a
business strategy and technology
consulting company. Alan is the
author of five books on Visual
FoxPro and Visual Basic, the
creator of various development
frameworks, and has developed
database systems ranging into
the thousands of users. He has
spoken around the world on
databases, object orientation, and
development team management
issues, as well as XML and
messaging-based applications.

Yair Alan Griver

COMMUNITY TIP

Outlook2003Bar
Written entirely in VFP, the Outlook2003Bar control has the
same look and feel of Microsoft Outlook 2003 navigation bar.
You can change the look of the control using the predefined
themes or create your own. It’s easy to use and FREE!

Take a look at: <http://www.codeplex.com/VFPX/Wiki/
View.aspx?title=Outlook2003Bar>

Emerson Santon Reed, Systems Analyst

Folhamatic Tecnologia em Sistemas

emerson.reed@folhamatic.com

5www.code-magazine.com

Visual FoxPro 9 introduced many new report-
ing enhancements. The most exciting aspect
of these enhancements was that you could

extend both the Report Designer and the Report
Output engines using xBase code. Sedna will intro-
duce even more ways to extend the VFP Reporting
Engine.

The Report Designer now
has the ability to add custom
tabs to the Report Designer’s
Properties dialog boxes. Prior
to Sedna developers could
not extend the existing Prop-
erties dialogs but they could
replace them using the Event
Handler Registry. This was
problematic because creat-
ing a custom Properties dialog is not an easy task
and different Properties dialogs, created by dif-
ferent developers, could not be used at the same
time. Sedna’s enhancement is a welcome addi-
tion for anyone who wants to provide a user in-
terface element in the Report Designer to accom-
pany a custom Report rendering object they have
created.

Sedna also makes it easier to extend the Report
Output process. REPORTOUTPUT.APP, included
with Sedna, provides a way to hook into the report
output using custom classes. The new classes are
called Handlers and consist of two types: FX and
GFX. The FX Handlers provide extended function-
ality to the report run but do not handle any draw-
ing or rendering to the report canvas. A progress
meter would be an example of an FX Handler. The
GFX Handlers actually render to the report canvas
and provide the ability to either extend the current
rendering or replace it all together.

Enhanced Properties Dialogs

Sedna includes several new FX and GFX Handlers
as well as new tabs, added to the Control Proper-
ties dialog boxes, to accompany these handlers. This
provides a user interface for these Handlers at de-
sign time.

The next few sections briefl y discuss the new tabs
included with Sedna.

Document Properties Tab

The FoxPro team added a new tab to the Report
Properties dialog called “Document Properties”
that shows a list of custom properties that you can
set to either store additional information about the

document or to control the re-
port rendering into a document.
Table 1 provides a brief descrip-
tion of the extended properties
included with Sedna.

The property names beginning
with “HTML” are specifi c to
HTML output and are currently
only supported by the HTML-
Listener (included in the _Re-
portListener.vcx FFC library).

Any ReportListener that generates documents can
use the other property names.

For example, if you set the custom document prop-
erties shown in Figure 1, the following text will be
included with the generated HTML fi le if a report is
rendered using the HTML Report Listener:

Sedna reporting
enhancements take the
ReportListener class to

the next level, making it more
practical than ever to

customize report output
and design.

Fast Facts

Leveraging Sedna Reporting
Sedna’s reporting features have made both the designing and
rendering of a VFP report more extensible.
In this article you’ll learn about a few of the new rendering objects that Sedna
includes such as rotation and hyperlinks. You will also learn how to create your own
custom rendering object and how to include a custom Builder interface element for it
in the Report Designer. O

N
LI

N
E

Q
U

IC
K

 I
D

 0
7

0
2

0
2

2

Bo Durban
Bo Durban is a partner and
consultant with Moxie Data,
Inc. He has been a software
developer for over 13 years
with an emphasis on reporting
and Web development. He is
the author of several reporting
utilities including Moxie Objects
for Visual FoxPro.

www.moxiedata.com

Bo is the project manager for the
GDIPlusX project, which is part
of VFPX, a community effort to
create open source add-ons for
Visual FoxPro 9.0

Http://www.codeplex.com/VFPX

Bo has spoken at Visual FoxPro
conferences as well as local user
group meetings.

Property Description

Document.Title Specifi es a title for the report document. For HTML output,
this will appear as a TITLE tag in the rendered document.

Document.Author Specifi es author information for the report document.
Appears as a META tag for HTML output.

Document.
Description

Specifi es a description for the report document. Appears as
a META tag for HTML output.

Document.
Keywords

Specifi es keywords to include with the report document.
Appears as a META tag for HTML output.

Document.
Copyright

Specifi es copyright information for the report document.
Appears as a META tag for HTML output.

Document.Date Specifi es a date for the report document.

HTML.CSSFile HTML output only. Specifi es the name of an external CSS
fi le for the generated document to use.

HTML.Metatag.
HTTP-EQUIV

HTML output only. Specifi es an HTTP-EQUIV tag to
include in the HTML output.

HTML.
TextAreasOff

HTML output only. Suppress the use of TEXTAREA tag for
stretch with overfl ow fi elds.

Table 1: List of custom report properties that are built into the new Report Designer.

Leveraging Sedna Reporting

6 www.code-magazine.com

<title>My Custom Report</title>
<META name="description" content="Just a
few words about this report">
<META name="author" content="Bo Durban">
<META name="copyright" content="Copyright
2006 CoDe Magazine">
<META name="keywords" content="Visual
FoxPro Sedna Reporting">

While this data is not visible on a Web page, this
can be useful information when creating document
indexes for search engines. Prior to Sedna, there
wasn’t a convenient way to include this information
in an HTML report document.

You can add custom properties to the property list,
but they won’t be recognized by the standard Re-
portListener. Any new custom properties must be
handled by a new custom ReportListener or a cus-
tom FX or GFX Handler.

Advanced Properties Tab

Microsoft added a new Advanced tab to each of the
Control Properties dialog boxes; Label, Field, Rect-
angle, Line, and Picture. This tab provides a list of
properties that a developer can customize for each
object on the report. Table 2 includes a descrip-
tion of each of the default properties. Note that the
property names prefi xed with HTML are used by
the HTMLListener only, by default.

The Advanced tab also includes an “Object Rota-
tion” control (Figure 2). Use this control to specify
a rotation angle for the current object. Use this to
render text or shapes at any angle, similar to the
functionality provided in Excel. The rotation occurs
during rendering only, so the rotation will not be
visible in the Report Designer. Also note that the
HTMLListener does not support rotation so the
rotation angle will be ignored when outputting to
HTML.

Dynamics Properties Tab

The Sedna team added a new Dynamics tab to the
Field, Rectangle, and Picture Controls Properties
dialog boxes. This tab specifi es a list of named con-
ditions for dynamically changing the attributes of
the report object during the report run.

If you click the Add button, Senda will provide a
dialog to enter the name of a new condition. Click
the Edit… button to display the Confi gure Dynamic
Properties dialog box. Here you can set a condition
expression and a set of control attributes that you
can override if the condition evaluates to true.

For Field controls, this allows for overriding the
fi eld’s text, font, font style, colors, back style, and

A new Advanced
tab has been added

to each of the
Control Properties

dialog boxes.

Figure 1: Custom Document Properties from the Report Properties dialog box.

Figure 2: Custom properties and object rotation on the Advanced tab.

Leveraging Sedna Reporting

7www.code-magazine.com

alpha (transparency) level. Notice that these are the
same attributes than can be overridden by the Eval-
uateContents event in the ReportListener. Figure 3
shows the sample dynamic you could use to force a
number to display as red if its value is negative.

For Rectangle and Picture controls, the Dynamics
tab allows for overriding the width and height of
the control. These are the same attributes that can
be overridden by the AdjustObjectSize event in the
ReportListener.

The ReportListener evaluates the dynamic condi-
tions sequentially and handles them similar to using
a CASE statement. The fi rst condition that evalu-
ates to True is the only dynamic override to occur
so the order of the conditions is very important. The
conditions listbox provides mover bars to adjust the
order of the conditions.

Viewing MemberData

These new tabs require that extra attributes are
stored in the FRX for each object. If an object re-
quires attributes that have no corresponding fi eld in
the FRX, you should store the extra attributes in the
object’s MemberData.

MemberData is an XML string that is stored in
the style column of the FRX. Microsoft introduced
MemberData in VFP 9.0 as a way to extend the
FRX while maintaining backwards compatibility.

At design time you can view or edit the Member-
Data via a context menu on the Control Properties
dialog box. Right-click on the dialog box to display
the context menu and select either “Browse…” or
“Edit XML…” from the “Object MemberData” sub-
menu (Figure 4).

Property Description

HTML.Link HTML output only. Specifi es an expression that evaluates to a URL and converts the current object into a
hyperlink.

HTML.Alt-Title HTML output only. Specifi es an expression that evaluates to alternate text that will appear as a tool tip in the
rendered HTML for this object.

HTML.Anchor HTML output only. Specifi es a named anchor point in the rendered HTML document. This anchor point can
be linked to by a hyperlink in either the existing document or from another document. This works well for
creating drill down reports.

HTML.CSS.
OverrideFRX

HTML output only. Allows for overriding the CLASS attribute of the tag used to render this object. Works
with the report-level custom property: HTML.CSSFile

HTML.
PrintablePageLink

HTML output only. Specifi es that the current object will be converted to a hyperlink and opens a GIF image
fi le representation of the current page.

ListenerRef.
NoRenderWhen

Specifi es an expression, that if true, will suppress this object from rendering on the report.

ListenerRef.PreProcess.
NoRenderWhen

Similar to NoRenderWhen (above) but is only evaluated once, at the beginning of the report run.

Table 2: List of custom object properties that are built into the new Report Designer.

Figure 4: Context menu for Control
Properties dialogs allows for viewing of
object MemberData.

Figure 3: Dynamics tab and
Configure Dynamic Properties
dialog boxes for the Field
object.

Leveraging Sedna Reporting

Read this entire article online at

http://www.code-magazine.com/focus/vfp/

8 www.code-magazine.com

LINQ’s core features will seem very familiar
to Visual FoxPro developers. LINQ provides
the ability to execute SELECT statements

as part of the core .NET languages, C# and Vi-
sual Basic. Anyone familiar with Visual FoxPro’s
query commands or T-SQL’s SELECT syntax will
fi nd familiar commands and capabilities. How-
ever, LINQ does not aim to reproduce VFP/SQL
Server features exactly. Instead, LINQ provides
many unique features that go much beyond simple
data query capabilities. Therefore, knowing other
query languages is an advan-
tage for developers who want
to take advantage of LINQ,
but at the same time, I recom-
mend not getting too hung up
on whether certain things are
exactly identical to standard-
ized SELECT-syntax. LINQ is
a separate language with dif-
ferent features and somewhat
different syntax.

A Feature Overview

So what exactly does LINQ
do? Let me put it this way: The
very fi rst time I got a private introduction to LINQ
quite some time ago, Anders Hejlsberg (the “father
of C#”) told me the goal was to create query abili-
ties inside of C# and Visual Basic that could “query
anything that has structure.” So what is it that “has
structure”?

Well, in C# and Visual Basic, quite a lot as it turns
out. First and foremost of course: data. This means
that you can use LINQ to query data sources such
as ADO.NET DataSets or SQL Server tables and
views. But LINQ can query a lot more. XML also
“has structure”. LINQ allows queries against any
XML data source including an XML fi le or an
XML string in memory. Objects also have structure.
And of course, everything in .NET is an object. In
fact, it turns out that LINQ is an engine that mainly
queries objects, and features used to query “other”
things, such as data or XML, are sitting on top of
the object query engine.

Let’s take a look at an example—an array of strings.
Since both arrays and strings are objects in .NET,

The Missing LINQ
Visual FoxPro’s (VFP) Data Manipulation Language (DML) is one
of VFP’s most compelling features. It is also the most obvious feature VFP
developers miss in .NET languages such as C# and Visual Basic. However, Language
Integrated Query (LINQ), a new query language for .NET developers, is a new
feature in the upcoming releases of C# 3.0 and Visual Basic 9.0 that addresses these
shortcomings. O

N
LI

N
E

Q
U

IC
K

 I
D

 0
7

0
3

0
3

2

you can use LINQ to query from string arrays. Con-
sider the following Visual Basic array of names:

Dim names As String()
names = New String(4)
names(0) = "Smith"
names(1) = "Snyder"
names(2) = "Baker"
names(3) = "Jonson"
names(4) = "Ballmer"

Or the C# equivalent:

string[] names;
names = new string[5];
names[0] = "Smith";
names[1] = "Snyder";
names[2] = "Baker";
names[3] = "Jonson";
names[4] = "Ballmer";

Using LINQ you can query
from these arrays. First I’ll
show you an equivalent of SQL
Server’s SELECT *. In Visual
Basic, you’ll use this LINQ
syntax to return all “fi elds” and
all “records” from this array:

From name In names Select name

Or in C#:

from name in names select name;

As you can see, this is not exactly like a SELECT
statement you know from VFP and SQL Server, but
still similar. In T-SQL you would use this equivalent:

SELECT name FROM names

You can see two main differences between these
simple LINQ selects and the simple T-SQL SE-
LECT. First, the LINQ statement seems to be back-
ward. While T-SQL specifi es fi rst what to select
and then where to select it from, LINQ goes the
opposite way by specifying the source (the “from”
part) fi rst. In the world of strong typing and Intel-
liSense, the LINQ approach makes more sense.
From a functional point of view however, the result
remains the same.

Markus Egger
Markus is an international
speaker, having presented
sessions at numerous
conferences in North & South
America and Europe. Markus
has written many articles for
publications including
CoDe Magazine, Visual Studio
Magazine, MSDN Brazil, asp.
netPro, FoxPro Advisor, Fuchs,
FoxTalk and Microsoft Office &
Database Journal. Markus is the
publisher of CoDe Magazine.

Markus is also the President
and Chief Software Architect
of EPS Software Corp., a
custom software development
and consulting firm located
Houston, Texas. He specializes
in consulting for object-
oriented development, Internet
development, B2B, and Web
Services. EPS does most of its
development using Microsoft
Visual Studio. EPS has worked
on software projects for Fortune
500 companies including Philip
Morris, Qualcomm, Shell, and
Microsoft. Markus has also
worked as a contractor on the
Microsoft Visual Studio team,
where he was mostly responsible
for object modeling and other
object- and component-related
technologies.

Markus received the Microsoft
MVP Award (1996-2006) for his
contributions to the developer
community. Visual LandPro, one
of the applications Markus was
responsible for, was nominated
three times in the Microsoft
Excellence Awards.
megger@eps-software.com

LINQ provides to C# and Visual
Basic what many Visual FoxPro

developers have long known as a
must-have feature:

An integrated query language.
However, LINQ goes beyond

the ability to query data
and instead queries data as
well as XML and practically

any sort of object
data source.

Fast Facts

The Missing LINQ

9www.code-magazine.com

Second, T-SQL simply says “from names” while
LINQ uses the seemingly more complex “from
name in names” syntax. LINQ supports more
possible sources than T-SQL. In T-SQL, “names”
must be a table (or some equivalent source such
as a view). In LINQ, the source could be any ob-
ject containing other objects of any complexity.
The above LINQ example specifi es that within
the “names” array, I expect items that I choose to
each refer to “name”, allowing me to then use that
“name” in various ways. In this very simple exam-
ple LINQ queries the entire “name” into the result
list, but in more complex examples (see below),
LINQ can use the “name” item in different ways.

The LINQ examples I’ve shown you so far are not
very exciting since the resulting list is exactly the
same as the source array. However, I’ll now spice
things up a little bit. Consider this Visual Basic ex-
ample:

From name In names _
 Order By name _
 Where name.StartsWith("S") _
 Select name

Or, once again, the C# equivalent:

from name in names
 orderby name
 where name.StartsWith("S")
 select name;

These queries return only the names that start with
“S” and sorts the result set. You can see how to use
each item (referred to as “name” in this case) as part
of the overall syntax. Without the “name in names”
syntax, you couldn’t use “name.StartsWith()”.

Now suppose I choose an array of complex objects
instead of a simple string array, such as an array of
customer objects, where each object has fi rst and
last name properties (among others). I might form
a query like so:

From customer In customers _
 Order By customer.FirstName _
 Where customer.LastName.StartsWith("S") _
 Select New { customer.FullName, _
 customer.Address}

In addition to the fact that this example uses
properties on the “name” items, the actual “se-
lect” part of the statement is somewhat unusual.
Instead of returning a list of customer objects, this
example returns a list of new objects where each
object in the list has “FullName” and “Address”
properties.

Note: Since each LINQ feature that I’ll discuss
works equally well in Visual Basic and C# and the
features have similar syntax, I will stop listing sepa-
rate language examples.

Now I’ll improve this example further by messing
with the return value. Keep in mind that LINQ can

return any object, allowing for much greater fl ex-
ibility than you would typically expect from query
statements. Consider this example:

From customer In customers _
 Order By customer.FirstName _
 Where customer.LastName.StartsWith("S") _
 Select New CustomerEditForm(customer.Key)

In this example, the result is a list of customer edit
forms, each of which is instantiated with the pri-
mary key of the customer from the source list.

This example shows a very interesting ability of
LINQ queries: The result set can consist of things
that weren’t even in the source. This is possible
since LINQ has all the capabilities of .NET lan-
guages at its disposal.

Other Data Sources

To keep the initial examples simple I’ve only used
arrays as the data source in my examples. LINQ
allows you to easily envision other sources, such as
collections. The limited scope of this article means
that I cannot nearly do the possibilities justice, but
consider possible sources such as the collection
of controls on a form (query all controls and join
them with some other data source for instance),
or the list of currently running processes. Also
note that it does not matter where the collection
originates. It is possible, for instance, to query a
collection of stock quotes returned from a Web
service.

Most developers seem to instinctively associate
LINQ with the ability to query tabular data from
SQL Server or a DataSet. Considering that query-
ing from such a data source is the main feature
of most query languages, it is an understandable
assumption, and that assumption is correct. (Al-
beit that assumption is often too limited. I want to
make sure you understand that querying a conven-
tional data source is just one possible case.)

One variation of queries over conventional data
sources are queries against data that already exists
in a DataSet (regardless of where that data origi-
nated). The following C# query, which assumes that
a DataSet named “dsCustomers” has been created
beforehand, returns items from a table within a Da-
taSet:

DataTable customers = dsCustomers.Tables[0];
var customerQuery = orders.ToQueryable();
var result = from c in customerQuery
 where c.Field<string>("Name").StartsWith("S")
 select new
 {FullName = c.Field<string>("FullName")};

You may have expected different syntax. For in-
stance, you must fi rst retrieve a reference to the
table within the DataSet you’re interested in (Da-
taSets are like in-memory database containers and
can contain any number of tables). Then, you have

Generics
Microsoft introduced generics in
.NET 2.0 (both in C# and Visual
Basic). Generics allow you to
create strongly typed constructs,
where every type (such as string,
decimal,…) is known by the
developer, yet still do so in a
generic fashion. For instance, you
may want to create a collection
object that you want to use
for any kind of object. Without
generics you can only specify the
type of the collection as “object”.
At run time you can choose to
store any type of object, (strings,
decimals, or forms), inside that
collection since they all are
objects. However, if you want
a particular instance of that
collection for strings only, yet
someone adds a decimal value to
the collection, then the compiler
cannot understand the potential
problem, and a run-time problem
may occur. With generics you can
still create a similar collection,
however, once the collection is
used, the developer specifies
that in a particular instance,
only a certain type (such as a
string) is applicable. If someone
accidentally tries to store a
decimal in the same collection,
then the compiler can catch that
problem ahead of time, and an
incorrect use is not possible.

For more information on generics
and how they relate to concepts
used in Visual FoxPro, visit
www.VFPConversion.com

Get the LINQ CTP
LINQ is currently available as a
Community Technology Preview.
To get the preview, visit

http://msdn.microsoft.com/
data/ref/linq

The Missing LINQ

10 www.code-magazine.com

to access that table as a “queryable” data source
so you call the “ToQueryable()” method on the
DataTable object. This is due to an implementa-
tion peculiarity of DataSets, which use .NET 1.1
style collections rather than generic collections.
(If you are interested in the exact technical de-
tails: DataSets implement IEnumerable and not
IEnumerable<T>, which is what LINQ is based
upon.)

In addition, standard DataSets do not expose in-
dividual fi elds in a strongly typed fashion, but in-
stead, every fi eld in a DataSet is of type “object”
(which can be seen as a generic type). However, in
order to query certain fi eld types such as strings in
a meaningful way, you must know their type. An
“object” typed fi eld, for instance, does not have a
“StartsWith()” method. To solve this problem, you
can either cast the type to something meaningful
on the fl y and also deal with other related issues
such as checking for null-values, or, you can use the
generic Field<T>(fi eldName) method, which allows
you to directly specify the type of the fi eld in ques-
tion (such as .Field<string>("Name")).

Note: See the sidebar, Generics, for more informa-
tion.

Much of what I said here only applies for default
DataSets. Typed DataSets (DataSets with a defi ned
structure), on the other hand do, not have these prob-
lems. Therefore, if you used a typed DataSet in this
example you could have used the following syntax:

var result = from c in dsCustomers.Customers
 where c.Name.StartsWith("S")
 select new { c.FullName };

LINQ to Databases

An extension to LINQ known as LINQ to Data-
bases allows a completely different way of accessing
data. LINQ to Databases allows direct queries into
SQL Server databases.

Of course, as mentioned above, LINQ always re-
quires some sort of object-setup to perform que-
ries. SQL Server (currently?) does not expose any
of the database tables and fi elds as objects, so at
least for the time being, you have to create client-
side classes that represent tables in SQL Server.
You can do this by hand, but typically you’ll use
Microsoft’s LINQ to Databases designer that will
integrate into Visual Studio. Figure 1 shows that
tool in action.

Once SQL Server objects are exposed to LINQ by
means of client-side .NET objects as demonstrated
here, you can run LINQ queries against those data
sources, as demonstrated in the following C# ex-
ample:

NorthwindDataContext db =
 new NorthwindDataContext();
Table<Customer>customers =
 db.GetTable<Customer>();
var result =
 from c in customers
 where c.LastName.StartsWith("S")
 select new {c.CompanyName, c.ContactName};

This example creates a data context and a DataT-
able object. Consider this conceptually like opening
a connection to the database and the table you are
interested in. Note that I say conceptually, because

COMMUNITY TIP

ClassBrowserX
ClassBrowserX is an
improvement to the normal
VFP Class Browser (you use
ClassBrowserX instead of VFP
Class Browser). ClassBrowserX
makes a working PRG
(or HTML) from every form,
class or project. Instead of
using the normal Class Browser
that generates only a content
(or list) of each form, class
or project as a PRG form,
ClassBrowserX generates a
working PRG that works exactly
the same as the original form,
class, or project.

At the moment ClassBrowserX
has one significant deficiency:
it can’t recognize all ActiveX
controls from the form
(class, project).

ClassBrowserX recognizes an
ActiveX control from an original
object (form, class, or project)
so that its CLSID value is read
(decrypted) from a binary
OLE field and then based on
that CLSID value, its OleClass
value (like MSComctlLib.
ListViewCtrl.2) is read from the
Windows registry and used in
the generated PRG code.

Figure 1: You can use Visual Studio’s integrated LINQ to Databases designer to expose SQL Server objects (tables).

The Missing LINQ

11www.code-magazine.com

in reality, LINQ doesn’t open a connection until the
actual query executes. However, LINQ needs these
fi rst four lines of code to fi gure out where the actual
data source resides.

The actual query is a LINQ query using standard
C# syntax (or standard Visual Basic syntax if you
choose to write in Visual Basic). The actual query
that runs on SQL Server, however, is executed in
standard T-SQL syntax. The above example results
in a server-side T-SQL query similar to the follow-
ing:

SELECT CompanyName, ContactName
 FROM Customers
 WHERE LastName LIKE 'S%'

The “translation” of the queries happens by means
of a fascinating technology known as expression
trees. A complete discussion of expression trees is
beyond the scope of this article (for more details,
visit www.code-magazine.com and www.VFPConversion.
com). However, the short conclusion to the long
story is that LINQ’s expression trees allow you to
execute any expression that you can form in C#
or Visual Basic that is sensible for queries on SQL
Server.

XML Support

LINQ has a special dialect known as LINQ to XML
that you can use to query and create XML. Like
LINQ to Databases, LINQ to XML also needs to
represent XML in some sort of objectifi ed fashion.
For this purpose, LINQ to XML provides a few new
classes for the specifi c purpose of creating and pars-
ing XML. Think of these classes as an alternative
to the XMLDOM and other XML parsing mecha-
nisms.

Two of the main classes for LINQ to XML’s XML
parsing are the XElement and XAttribute classes.
The following C# example takes an in-memory
XML string and loads it into an XElement object:

XElement customers = XElement.Parse(
 @"<customers>
 <customer>
 <name>Smith</name>
 </customer>
 <customer>
 <name>Jones</name>
 </customer>
 </customers>");

Once you have XML available inside an XElement
object you can use it in LINQ to XML queries:

from c in customers.Descendants("customer")
 select c.Element("name").Value;

You can also use LINQ to XML to create XML on
the fl y as the result set of queries. In C#, this hap-
pens by means of using XElement and XAtrtribute
objects as the result set. Visual Basic goes a step

further and supports XML directly as part of its na-
tive syntax. This Visual Basic example creates an
XML string containing the names of all the fi les in
the root directory:

Dim result As XElement = _
 <Files><%= From fi le In
 My.Computer.FileSystem.GetFiles("c:\") _
 Where fi le.IndexOf(".") > -1 _
 Select <File><%= fi le %></File> %>
 </Files>
Dim xml As String = result.ToString()

Of course, even in Visual Basic you can alternative-
ly use XElement and XAttribute objects to achieve
this result.

Above and Beyond

This short article hardly manages to scratch the sur-
face of what’s possible in LINQ and how powerful
this new engine is. CoDe Magazine features several
more articles on LINQ as well as related topics such
as new C# language features. You can view these ar-
ticles online at www.code-magazine.com/focus/vfp and
www.VFPConversion.com.

The problem is how to find an
offset of where to find the CLSID
value from the OLE field. Through
trial and error I’ve figure out
tree offsets for where to find
the CLSID value but there are
some (lots?) of ActiveX controls
that don’t have CLSID values at
those offsets. If you know how
to read a binary formed OLE field
from a form, class or project
file, then you can help finalize
ClassBrowserX for the Fox
Community!

You can download the current
code from

http://www.gotdotnet.
com/codegallery/
releases/viewuploads.
aspx?id=0826d7a6-1dab-
4a71-8e70-f2170c3c1661
or http://www.codeplex.
com/Release/ProjectReleases.
aspx?ProjectName=VFPX&Rel
easeId=66

Arto Toikka
GNC Finland Ltd

Markus Egger

The Missing LINQ

Reporting, COM Interop, Upsizing, Deployment and more…

 Use Team System
 with VFP!

Se
dn

a

Con
ten

t!

Sedna: Beyond
VFP 9

 LINQ: You’ll
Query Almost
Anything in .NET

 Use the “My”
 Namespace in Sedna!

 Web Services and WCF
 with VFP and .NET

 The New and Improved
 Data Explorer

Volume 4 / Issue 1

Karus Systems Limited 51
 www.karus.com

Micromega Systems 2
www.micromega.com

Moxie Data, Inc. 51
 www.moxiedata.com

Stonefi eld Systems Group Inc. 35
 www.stonefi eld.com

Sweet Potato Software 17
 www.sweetpotatosoftware.com

VFP Conversion 26-27
 www.vfpconversion.com

VFP Conversion Tools 52
 www.vfpconversion.com/tools

West Wind Technologies 37
 www.west-wind.com

White Light Computing, Inc. 23
 www.whitelightcomputing.com

Advertising Sales:
Vice President,
Sales and Marketing
Tom Buckley
832-717-4445 ext. 34
tbuckley@code-magazine.com

Sales Managers
Erna Egger
+43 (664) 151 0861
erna@code-magazine.com

Tammy Ferguson
832-717-4445 ext 26
tammy@code-magazine.com

Advertisers Index

This listing is provided as a courtesy to our readers and
advertisers.

The publisher assumes no responsibility for errors
or omissions.

A
D

VE
R

TI
S

IN
G

 I
N

D
EX

12 www.code-magazine.com

If you are currently involved in a conversion ef-
fort or are planning a conversion effort, then this
article is for you. If you’re new to .NET or SQL

Server, this article can help you
look at those technologies from
a VFP perspective.

A solid plan for conversion
consists of the following:

• Document your existing
system.

• Understand the separate
conversion functions re-
quired.

• Evaluate the best strategy for converting your
application.

• Discover the level of effort required to tackle
each function.

• Document the plan of attack.
• Implement.

In this article, I’ll focus on the most typical ex-
ample of a Microsoft-centric conversion to SQL
Server for a data store and a C# or Visual Basic
code base. However you can apply this process to
a conversion to other databases and languages. In
addition, I’ll address specifi c techniques for con-
verting VFP to .NET in the Implementation sec-
tion so that you’ll know how to get started with the
hands-on work.

Document Your Existing System

Before you begin any development work, you’ll
document the existing application in order to
provide metrics, a basis for your estimates, and
a roadmap for the process. Documenting the ex-
isting application can range from a list of how
many PRGs, SCXs, and FRXs you have to so-
phisticated metrics that attach weighted values
to every part of your application. You can fi nd
a free tool written in VFP8 at VFPConversion.
com (see sidebar, Tools for Conversion) that will
scan a PJX (project) fi le and output some mea-
surements for the project. This tool provides a
good starting point for documenting an existing
VFP application.

Understanding where you are today will be a key
step in a successful conversion effort. Assessment
documents give the non-technical members of the

team, including management,
an understanding of the size
and scope of the project. They
also serve as a common non-
technical description of the
work to be done.

Understand the
Separate Conversion
Functions Required

The functions required to convert an application
vary from project to project based on the goals you
have for the conversion. At one end of the spec-
trum you’ll fi nd simply converting an existing VFP
application to use SQL Server instead of DBFs to
store data. On the other end of the spectrum you’ll
see a complete rewrite of an application to change
its basic architecture, give it a face lift, and use the
knowledge gained with the old application to create
a completely new version. In this article, I’ll discuss
the most typical conversion project—producing a
.NET version of an existing VFP application with
current functionality.

The possible conversion functions follow:

• Upsize DBFs to SQL Server.
• Tune SQL Server.
• Convert an existing application to use a SQL

Server back end.
• Convert visual aspect of forms.
• Convert data environments of forms.
• Convert form code.
• Convert visual aspect of reports.
• Convert data environments of reports.
• Convert expressions and code in reports.
• Convert method code and PRGs.
• Convert functionality provided by ActiveX

controls and FLLs.
• Convert visual aspect of menus and toolbars.
• Convert menus and toolbar code.
• Handle special issues—unique programming

challenges.

From VFP to .NET
A practical look at what’s involved in converting your Visual
FoxPro (VFP) applications to Visual Studio and SQL Server.
Let me say up front that I am a long-time FoxPro developer and that I love VFP.
I also love .NET and SQL Server and I’ve headed up and participated in many
conversions. Most of the conversions I’ve worked on were not driven by technical
necessity, but by customer demand that software be built with .NET and SQL Server.
Whatever the reason, conversion from VFP to .NET is a significant undertaking.

Microsoft has not published
a roadmap for moving

from Visual FoxPro to .NET
and SQL Server. Nevertheless,
the road has been successfully
navigated and third-party maps

are now available.

Fast Facts

Mike Yeager
myeager@eps-software.com

Mike Yeager has a BA in
Computer Science from Rutgers
University. He first started xBase
development with dBaseIII and
the Quicksilver compiler, and
then moved to Fox+ for Mac and
FoxPro for DOS 2.0. He’s used
almost every version of FoxPro
and has built applications on SQL
Server since v6.5.

Mike is a senior developer for
EPS Software Corp., in Houston,
TX, where he works with many
technologies including VFP, C#,
and SQL Server.

Mike has written several articles
for various FoxPro publications
and has been active on the
Universal Thread for many years.

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
0

4
2

From VFP to .NET

13www.code-magazine.com

Evaluate the Best Strategy for
Converting Your Application

If the existing application uses DBFs to store data,
you must decide whether to modify it to work with
a SQL Server back end prior to converting any code
to .NET. This approach works well when the sup-
port staff is not already familiar with SQL Server
and when there is suffi cient time in the timeline,
because it allows the staff to become familiar with
administering SQL Server and allows time for fi ne
tuning the database prior to switching to an entirely
new code base. In multi-application conversions,
having the database converted and functional up
front allows for an incremental conversion. Un-
fortunately, when you take this approach you’ll
do some work on the existing code base and you’ll
have to toss that work aside when moving to the
new code base.

You can convert systems that are currently built as
several individual applications or modules accessing
a SQL Server back end in an incremental fashion, one
application or module at a time. If the existing appli-
cations aren’t already divided neatly into functional
areas, do that now so that you can turn on function-
ality in the new application and turn off functionality
in the old application in stages, giving you a smooth
transition path to the new application.

Much has been written about using interop between
VFP and .NET in a conversion, so I won’t try to
cover all of that here. Essentially, if you’ve got VFP
COM objects or VFP Web services, .NET can easily
consume them. Likewise, VFP can consume .NET
Web services and DLLs exposed as COM objects. In
a new twist, Microsoft recently released the Interop
Forms Toolkit 1.0 as a power pack for Visual Ba-
sic 2005 which makes it easy to expose .NET forms
written in Visual Basic as COM objects. While Mi-
crosoft developed this toolkit to allow Visual Basic
6.0 applications to run .NET forms, it works with
any environment that can use COM, including
VFP. I’ve tried the toolkit and have successfully
run .NET forms within my VFP application. With a
little work, you can even save VFP cursors as XML,
pass the XML to a .NET form, and reconstitute it
as a .NET DataTable. You can also use your DBFs
in your .NET applications—especially with the new
DDEX provider shipping as part of Sedna.

Initially, you’ll do a little work on each of the areas
needing conversion so that you can discover the level
of effort required for the conversion as described in the
next section. However after the initial phase, you will
divide the work into classifi cations described earlier
in “Understand the Separate Conversion Functions

Required”. The most successful order for performing
the conversion has historically been to convert the
main program and window for the application, and
then convert the visual aspects such as forms, menus,
and reports. This gives you a complete skeleton of
the application, though not a fully functional applica-
tion. Once you have a skeleton in place, convert the
data aspects of the individual elements, followed by
the method code, resolving special issues, testing, and
Quality Control (QC). In some instances, developers
will have more success converting all aspects of each
form, report, and menu before moving on to the next.
In other cases, specialization of skills makes the pro-
cess fl ow better when you carry out each conversion
process separately from the others. Making a good
decision for your situation depends on knowing the
strengths of your team.

Discover the Level of Effort Required to
Tackle Each Conversion Function

In order to accurately determine the level of effort
required in a conversion project, you must complete
samples of each type of conversion task and measure
the time it takes to complete them. Just like making
pancakes, you will generally throw out the very fi rst
effort as non-representative since it will involve a
lot of discovery. The very fi rst form you convert will
probably take a fairly long time if you’ve never done it
before. Measuring the time it takes to convert the sec-
ond and third forms, however, can give you valuable
information about how long it will take to convert
the next 200 forms. Even though developers will get
better at conversion tasks and will convert the 200th
form much more quickly than the 4th form, they will
also run into what I call “special issues.” Special issues
are problems unique to one or two of your forms. On
average, the increase in effi ciency you achieve from
repetition will be offset by special issues that must be
tackled so these early measurements will turn out to
be more accurate than you might suspect.

Document the Plan of Attack

Armed with metrics about the size and complex-
ity of your applications, a strategy for doing the
conversion, and estimates that give you a level of
effort expected, you’ll be ready for the next steps:
document the plan, develop timelines, do resource
planning, and create guidelines for implementation.
The larger the application, the larger the conversion
team, the more valuable a documented strategy be-
comes. But even on small projects, it’s important
that all team members, including management, un-
derstand what to expect.

Implement

Database Upsizing to SQL Server

You’ll fi nd two common paths to take in upsizing
DBFs (with or without DBCs) to a SQL Server da-

There is no point-and-click
wizard that converts Visual FoxPro

applications to .NET.

From VFP to .NET

COMMUNITY TIP

A Scrollable
Container for VFP!
Carlos Alloatti’s ctl32_scontainer
provides VFP 9 developers with
a commercial quality scrollable
container component that’s both
easy to use and full featured.
Like all of Carlos Alloatti’s ctl32
components, this control is free
and comes with fully commented
source code and excellent
documentation.

At its simplest, the ctl32_
scontainer is a VFP container
with native Windows scrollbars.
These scrollbars are aware of
Windows XP and Windows Vista
themes and automatically match
the appearance and behavior of
scrollbars on a user’s system.
Because the ctl32_scontainer
is based on a VFP container,
you can easily integrate it into
your existing projects—there
are no learning curves regarding
PEM’s and container appearance,
the behavior will match what
VFP developer are already
accustomed too. Bonus: This
control is implemented entirely
in VFP 9 so there are no DLL’s,
FLL’s or ActiveX components
to register or distribute. This
control adds 2 small classes (an
additional 100K or about 25K
compressed) to your distribution.

Once you start building interfaces
with scrollable regions, you’ll
quickly realize that scrollbars
are only part of the solution.
Today’s users expect to
navigate scrollable containers
via their mouse wheel or by
clicking and dragging on the
container’s background (ala
Google map style navigation).
Ctl32_scontainer supports both
forms of advanced scrolling and

14 www.code-magazine.com

tabase. The fi rst is to use the VFP SQL Server upsiz-
ing Wizard in a one-time process. The wizard has
proven effective for the initial conversion of small
to medium sized databases. Once the structure of
the database resides in SQL Server you will tweak
and maintain it there. The data will very likely be
imported into the new SQL Server database struc-
ture many times after the initial upsizing either via
the “import” function of SQL Server Management
Studio or through the second method of upsizing—
custom SQL Server Integration Services packages
(formerly known as DTS packages).

In complex upsizing scenarios you can use SQL
Server Integration Services (SSIS) to map the VFP
data into an entirely new SQL Server database
structure and it can perform complex conversions
on the data during the import. I want to mention for
those not targeting SQL Server as their new back-
end data store, that SSIS does not require either the
source or the target for the data migration package
to be SQL Server. You can use SSIS, for example, as
an effective tool to upsize VFP or Microsoft Access
databases to Oracle or Informix—or even the other
way around!

Along with any transformations to the new database,
you will normally practice the importing of data
several times to insure the process is bullet proof
when it comes time to convert the live database.
You’ll also fi nd the importing process valuable for
testing and QC purposes. VFP reports run against a
certain VFP dataset should match exactly those run
against the SQL Server version of the same dataset.
In order to accomplish this, testers often have their
own copies of the VFP and SQL Servers versions of
specifi c datasets.

More often than you think, you will have to tweak
the SQL Server database structure as the conversion
process progresses. After you make these changes,
you can re-run the import routines to create clean
copies of the development and test databases and to
verify that the import process is still valid.

When working with large databases, you will create
and use smaller subsets of the production data to
facilitate both the developers and testers and you
will do full-sized conversions to accommodate per-
formance testing.

VFP Application Conversion for SQL
Back End

VFP supports two ways to talk to SQL Server, SQL
pass-through and Remote Views. SQL pass-through
is both faster and more fl exible, but it’s also harder
to convert in an automated fashion and it doesn’t
support binary data. Still, in most cases SQL pass-
through will be your go-to technology for the major-
ity of your application.

SQL pass-through does not, by default, support
pushing updates made to the local cursor back to

the server. Fortunately, you can push updates back
to the server in code. This approach emulates VFP’s
native ability to support inline SQL language syntax
in your code. Instead of executing the SQL directly
as a command, you’ll make a function call with
the SQL statement and you will use parameters to
combat SQL injection attacks. On a typical editing
form, you might use SQL pass-through to retrieve a
cursor that you will bind to a combo box, another to
calculate some values for display, and another to re-
trieve the record that you’ll be editing. Only the last
cursor needs to be updatable, so you’ll run this code
against the cursor so that a simple TableUpdate()
will push the changes back to SQL Server.

When the table you’re working with contains bina-
ry data, remote views are your only choice. When
used in a data environment, remote views are also
relatively easy to convert automatically to .NET.
But remote views are relatively slow and they
are statically defi ned and must reside in a DBC.
Though you can create remote views program-
matically, the fact that they must reside in a DBC
means that excessive creation and destruction of
remote view defi nitions will result in bloating of
the database’s memo fi le and the process will fur-
ther decrease performance.

Database Tuning

VFP programmers have a tremendous amount of
knowledge of SQL databases. However, SQL Server
is not exactly like VFP and there is a learning curve
associated with it. Some of the main issues you’ll en-
counter in a conversion are the differences in column
types and the differences in indexes. For the most
part, SQL Server has many more column type choic-
es than VFP. For instance, if you’re storing the value
for a 3-option radio button in a DBF, you can choose
either Numeric(1,0) or Integer. In SQL Server, you’ll
want to choose a TinyInt (numeric type that can hold
values from 0–255). The one notable exception to
SQL having more choices of data types is VFP’s Date
type which has no direct equivalent in SQL Server.
SQL Server supports DateTime and SmallDateTime,
but you must always store the time portion—even if
you don’t want to use it. Even more strange is that
SQL Server does not have a convenient way to strip
the time portion from a DateTime value so that it can
easily be used as a date. Luckily, VFP handles that
by mapping SQL DateTime columns to VFP Date
columns, but when coding for .NET you’ll have to
accommodate this difference.

Indexes in SQL Server bear little resemblance to
those in VFP, though they have the same intent.
SQL Server indexes cannot be based on expres-
sions—only columns. This isn’t as bad as it sounds
because the most common expressions used in VFP
indexes are UPPER() and DELETED(). By default,
SQL Server’s use of indexes is case-insensitive, and
there is no concept of a deleted record. When you
think that you never access an index directly in SQL
Server (you can’t in fact), it’s actually a much easier
system to work with. In SQL Server, indexes are

From VFP to .NET

Ctrl+mousewheel zoom-in/zoom-
out scrolling when hosting image
controls. In addition, ctl32_
scontainer also supports auto
scrolling during data entry so that
hidden controls automatically
scroll into view when they gain
focus.

Advanced developers can
customize scrollbar appearance,
visibility, enabled status and
small-large-wheel-change values
as needed.

This a must-have product in your
development toolkit!

Check out ctl32_scontainer as
well as other high quality controls
available from Carlos’ ctl32 Web
site at http://www.ctl32.com.ar.
All of Carlos’controls are highly
recommended.

Malcolm Greene
mgreene@bdurham.com
Brooks-Durham Software

15www.code-magazine.com

made up of one or more columns and indexes can
be primary keys, unique (candidate in VFP-speak),
or regular indexes.

I can’t even begin to tell you all you need to know
about tuning indexes in SQL Server, but covered
indexes are a good place to start. Covered indexes
contain all of the columns used in a query. They’re
much faster than non-covered indexes because in-
stead of using the index to determine which re-
cords are qualifi ed, looking up the records and re-
turning the data, SQL Server can return all of the
data straight from the index, without ever looking
up the underlying records.

You should also know about clustered indexes. By
default, the SQL Server Management Studio UI
makes any primary key that you create with it a
clustered index. In many (if not most) cases, this
is not a good idea. A clustered index isn’t really
an index at all. What it really does is specify that
as records are added to a table or modifi ed, they
are to be physically sorted. Since you’re specify-
ing a physical sort, you can have a maximum of
one clustered index per table (you can’t physically
sort the same table two ways at once). Going back
to the discussion about covered indexes and how
SQL Server no longer has to look up the base re-
cords in order to return data for a query, think
of clustered indexes as an improved version of
covered indexes. Since the records are physically
sorted, you have access to every single column in
a selected record without doing a second lookup.
In addition, the records are physically located next
to one another on disk, so operations working on
consecutive records are very fast. Clustered index-
es are very powerful if used correctly—but horrible
if used incorrectly. Imagine setting a primary key
to a Uniqueidentifi er (GUID) column and making
it a clustered index. Every insert on the table will
cause a re-sort on disk—YUCK! When in doubt, do
NOT use a clustered index unless you are abso-
lutely sure about it.

A good rule of thumb for those new to SQL Serv-
er indexing is to begin by adding a non-clustered
primary key to every table. As performance issues
arise, add new indexes judiciously to alleviate the
issues.

Visual Conversion

While often thought of as the “easy part” of the
conversion because it doesn’t involve coding and
algorithms, visual conversion from VFP to .NET
often takes more of the time in a conversion proj-
ect than any other task and usually comprises a
large portion of the cost of the project.

If your goals in the conversion are to change the
look and feel or the core architecture and work-
fl ow of the application, you’ll be re-creating your
forms from scratch. You may choose to do the
same with reports. However, in the majority of
cases tools can do the visual conversion of forms

and reports in a matter of minutes. Then you can
plug converted forms and reports into the .NET
project to create a non-functioning skeleton. Like
the framing of a house, you get a great feeling of
satisfaction because a great deal of change is read-
ily apparent with comparatively little effort. With
the skeleton of the forms and reports in place, you
can add functionality to the application in an in-
cremental fashion as you make the forms and re-
ports, one-by-one.

Data Environment Conversion

One of VFP’s key strengths is that data manipu-
lation is baked right into the language. Unfortu-
nately, this removes some of the structure imposed
on other languages and makes an automated ap-
proach to data environment conversion problem-
atic. If your application uses private data sessions
in conjunction with local or remote views in all of
its forms and reports, it is likely that you’ll be suc-
cessful in converting your data environments auto-
matically using a tool or a custom utility. However,
if your data environments are built on the fl y us-
ing the language in various places throughout your
forms, you will have a more manual process on
your hands.

.NET treats data in an object-oriented fashion. The
languages do not have the concept of a data en-
vironment the way that VFP does. Instead, forms
hold references to DataSets and/or DataTables. A
DataSet is somewhat analogous to a data environ-
ment in VFP because it contains tables, but there
are signifi cant differences. For instance, you can
easily have more than one DataSet in use by a .NET
form while it’s not easy to use multiple private data
sessions in forms in VFP.

.NET also has a MUCH more limited ability to ma-
nipulate data than VFP. The syntax is cumbersome,
relying on DataSet and DataTable objects (which
are part of ADO.NET) to handle data manipula-
tion. Code such as the following in C# shows you
how ugly it can be:

int someValue =
(int)myDataSet.Tables["MyTable"].Rows
[currentRow] ["SomeColumn"];

Many good .NET developers create classes just to
interact with the data, a process called Object Re-
lational Mapping (ORM), allowing them to work
with strongly typed properties of a class and have
the class deal with the details of the DataTables
and DataSets. The strongly typed DataSets in
.NET are simple examples of this strategy for ac-
cessing data and most .NET Frameworks and so-
lution platforms include some implementation as
well.

Some of this is set to change in the next version of
Visual Studio when both the Visual Basic and C#
compilers will support Language Integrated Que-
ry (LINQ). You’ll fi nd LINQ even more powerful

From VFP to .NET

COMMUNITY TIP

GDIPlus-X
My experience working with
the VFP-X community and Bo
Durban and Craig Boyd has
been very exciting. Working
on the GDIPlus-X project, I
have had the opportunity to
learn a lot of new things and
discuss new approaches and
techniques. I’m in Brazil and it’s
been very amazing to be able to
work together with other great
developers so many miles away
from my home.

GDIPlus-X (<http://www.
codeplex.com/VFPX/Wiki/View.
aspx?title=GDIPlusX>) is a
VFP-X Community project that
reproduces the
System.Drawing namespace
of Visual Studio .NET. With this
library, developers will be able to
easily translate any .NET sample
using System.Drawing into VFP
code. GDIPlus-X wraps all 603
GDIPlus.dll functions and brings
to VFP developers many new
possibilities including the ability
to create charts, drawings, styled
texts, change the IDE, recreate
controls, work with Windows
themes, and more.

It also brings some new functions
and classes, such as the Image
Canvas class that permits
rendering graphics on a VFP
form, bringing the possibility to
draw directly to a VFP Image
control, instead of drawing
using the form’s HWnd. This
way developers don’t need to
worry about the Windows Paint
updates. It works super fast-
images are stored in memory,
avoiding disk access and
performance loss.

Download the latest stable
release and run the samples to
have an idea of the power of this
library. You’re also encouraged
to participate in this project
through coding, testing, giving
suggestions or reporting errors.
Please send a message to our
project manager, Bo Durban
(gdiplusx@moxiedata.com)
or post directly on the Codeplex
message boards.

Cesar Chalom
cchalom@uol.com.br

16 www.code-magazine.com

than the data manipulation features in VFP, but
it will still be a version 1.0 product, so it’s likely
to be lacking in several areas as well. Still, in the
coming years LINQ may blow the lid off of what
VFP developers have always enjoyed over our fel-
low data-challenged non-VFP developers.

Code Conversion

You’ll quickly fi nd that code
conversion is one of the most
diffi cult parts of the conver-
sion process. It requires the
most skill in both VFP and
.NET. You should think of this
process more as a translation
process than a conversion pro-

cess—like translating a book from one language to
another. It’s not a matter of translating each word;
it’s a matter of translating the meaning.

To some extent you can automate the conversion of
the control structure of the code. Just about every
language has a counterpart for a control construct
in every other language—or a way to emulate it. For
instance, a DO CASE in VFP translates very closely
to if () … else if () in C#, but only in some cases
does it map to the switch() statement, which at fi rst
glance looks like the most similar construct.

You can also convert expressions in an automated
way. For example, libraries exist that will let you
run an expression such as the following directly in
.NET:

TRANSFORM(DOW(DATE()+1))

You can also fi nd utilities that will convert that ex-
pression to C# or Visual Basic equivalent source
code (see the Tools for Conversion sidebar).

Translating entire blocks of code to produce the
same results in another language will require the
most attention. If, for instance, you’ve used a third-
party library to incorporate TCP capabilities into
your VFP application, you’ll be pleased to know
that TCP support is now native in the .NET Frame-
work and easy to use at that. Unfortunately, you
will now have to rewrite your TCP functionality. If
you’re converting data-specifi c functionality, you
might fi nd yourself converting a SCAN loop into
a foreach() working against the rows of a DataT-
able—or you may fi nd that rewriting the code as
a stored procedure in SQL Server is the best ap-
proach.

Exception handling is another area that will re-
quire attention. VFP has default error handlers, Er-
ror() methods, ON ERROR statements, and TRY/
CATCH blocks. C# and Visual Basic only have
TRY/CATCH blocks.

Still, in a well-constructed VFP application, the
blocks of code will be small and discreet and will
lend themselves to incremental conversion, one

method at a time. As the conversion takes place, the
visual walking skeleton of the application becomes
functional.

Special Issues (A/X, FLL, OCX,
Frameworks)

.NET does support ActiveX controls and COM ob-
jects through wrappers that encapsulate the unman-
aged code; however, in most cases you will fi nd that
the control’s authors also make a managed .NET
version that you can use instead. If you fi nd a man-
aged .NET version of the control, USE IT! If you
must use an unmanaged control, you’ll fi nd that
.NET supports them MUCH better than VFP. No
messing with AutoYield settings or using timers to
get around weird UI quirks.

FLLs are not supported in .NET, but in recent years,
FLLs are becoming scarcer in VFP apps. Function-
ality found in VFP FLLs such as JKEY’s incremen-
tal search for grids is baked right into .NET. In fact,
.NET grids support advanced features such as sort-
ing by any column in ascending or descending order
right out of the box.

Some of the companies that built frameworks for
VFP have also built .NET frameworks—OakLeaf’s
Mere Mortals framework for example, though the
frameworks are not directly equivalent and there is
no offi cial upgrade path. In some cases like Visual
Extend, the “framework” produces native VFP code
and doesn’t add components to the project. In al-
most all cases you won’t fi nd a conversion for your
VFP framework and will have to code accordingly.
Frameworks are not nearly as prevalent in the .NET
world though the case for them is still compelling.

If you want to incorporate a .NET framework such
as StrataFrame or Milos (part of the Milos Solution
Platform) into your converted application, it will
become part of your conversion effort at every level
and you’ll fi nd it well worth the effort.

Testing and QC

The testing process begins on the fi rst day of your
conversion and continues after you write the last
line of code. Unlike creating a brand-new applica-
tion, conversion projects have the advantage that
you already know how the system should perform.
If the new functionality matches the old functional-
ity, it’s correct. If the new report comes out exactly
the same as the old report, it’s correct. There is not
the same level of work involved as there is devel-
oping a new system and gathering and refi ning re-
quirements.

.NET code has a lot more support for testing than
VFP. If you’re not familiar with the concepts of unit
testing, look into NUnit or the unit testing built into
the Team System versions of Visual Studio. You
have a unique opportunity to incorporate testing

In most cases SQL
pass-through will be your go-to

technology for the majority
of your application.

From VFP to .NET

Tools for Conversion
VFPConversion.com provides
tools, training, and expertise for
organizations converting Visual
FoxPro applications to the .NET
platform and to SQL Server. The
Web portal gives you access
to white papers, blogs, tools,
and resources. There you can
download a free VFP project
evaluation tool to help you with
your planning. VFPConversion.
com also has tools that automate
much of the conversion process
including Vfp2Net(Reports) report
converter and Vfp2Net(Forms)
form converter.

17www.code-magazine.com

into your application during the conversion pro-
cess, because you will test to ensure that the .NET
version of your code performs at least as well as
the VFP version. Capturing these tests will not only
help you in your conversion effort, but will give you
invaluable tools for testing changes you make to
your application later in its life. How many times
have you been afraid to make a change to your ap-
plication because you didn’t know the consequenc-
es? Having a battery of tests available helps you to
answer that question with confi dence.

In addition to unit testing, converting an applica-
tion will mean you do a lot of regression testing.
Regression testing is more of an end-to-end user
experience test than a unit test. For example, while
unit testing can validate the tax calculation for an
invoice, it can’t test the user experience or validate
that the newly calculated tax rate gets printed on the
invoice correctly when the sale is over. Generally
after you’ve converted each form, report, and pro-
cess, you’ll pass it to the testers to “bang on.” As you
convert entire groups of items and functions, your
team will test them again as units. Finally, when the
entire application is ready, it is tested again to see
how it works as a whole.

Testing requires frequent conversions of the data-
base as well as new versions of the code. In com-

parison to new product development, testing of
conversion projects is faster and easier, but it is also
more critical because the new code is designed to
replace a mature application and the bugs that are
expected in new software are not tolerated nearly
as much in converted applications.

Conclusion

There is no point-and-click wizard that converts
Visual FoxPro applications to .NET. VFP program-
mers who remember the wizards that converted
FoxPro DOS and FoxPro Win applications to Vi-
sual FoxPro and Visual Basic programmers who
have tried the tools and wizards for converting
VB6 apps to Visual Basic .NET will tell you that
automatic conversion of complex systems from
one paradigm to another (let alone one language to
another) doesn’t often work out as you hope. Still,
conversion projects happen, tool vendors write
tools that make the challenge a little less daunt-
ing, and you will have the experience of those who
have gone before you. The task is neither trivial
nor impossible. It’s another challenge—an oppor-
tunity to grow and learn.

Mike Yeager

From VFP to .NET

18 www.code-magazine.com

Fox developers have long mocked the Upsiz-
ing Wizard as a weak attempt to assist VFP
developers migrating VFP database containers

to the SQL Server database platform. The Sedna
release completely changes
the perception and gives you a
great tool to migrate data easily
to SQL Server 2000 and SQL
Server 2005.

The fi rst thing you should
know about the Sedna Upsiz-
ing Wizard is it is more than a
standard wizard. It has a stan-
dard wizard user interface to
step you through the process
of selecting the appropriate
settings to migrate the data-
base structures and optionally
the data as one would expect.
Sedna’s new architecture sepa-
rates the wizard user interface
from the upsizing engine so
developers can programmatically control a migra-
tion. This means you can skip the user interface
and take control of the process so you do not need
to re-select your choices again as you step through
the user interface each time you want to test a mi-
gration. In addition, the entire process is extend-
ible in true VFP tradition.

This article will address each of the steps in the
updated wizard, discuss the changes and im-
provements the Fox Team made to the process,
and provide you an example of programmatically
controlling the engine along with properties you
set and methods you call to perform a database
upsizing. I’ve based the changes discussed in this
article on the Sedna October 2006 Community
Tech Preview (CTP). Please note that at the time
I’m writing this article, Microsoft has not fi nal-
ized the features that they’ll include in the fi nal
release.

Upsizing Wizard UI

The Fox Team has revamped and modernized the
Sedna Upsizing Wizard user interface (UI). The
UI uses a standard wizard to step through choices
and make appropriate selections for the migration.

Previously, Visual FoxPro’s Upsizing Wizard in-
cluded nine steps but the Sedna Upsizing Wizard
reduces the number of steps to six steps, thereby
streamlining the process and placing the steps in a

more logical order. For exam-
ple, in Sedna, Microsoft moved
step fi ve (selecting the target
database) of Visual FoxPro’s
Upsizing Wizard to step three
because that seems more logi-
cal. Microsoft also consolidated
steps three (choose tables) and
four (map fi eld data types) into
a single step.

You can start the Upsizing Wiz-
ard in one of three ways. If you
are running the CTP inside of
VFP 9.0 (with or without any
of the service packs) and try to
run it from the Tools > Wizards
menu you will still get the old

Upsizing Simplified
The Sedna Upsizing Wizard is leaps and bounds better than the
version previously shipped by Microsoft in any version of Visual
FoxPro. The Fox Team listened to the complaints from the Fox Community over the
years about the wizard being deficient, with some fatal flaws, and recognized how it
became outdated with the advent of SQL Server 2005. Sedna attempts to correct all of
this and more.

Most Visual FoxPro developers
who tried the

VFP 9.0 and earlier
Upsizing Wizard hoped to find
a tool to simply take their VFP
database container and make
it into a SQL Server database.

These same developers usually
tried it once or twice, and

watched it not
do the complete job the way

they hoped it would and quickly
abandoned the idea.

Fast Facts

Rick Schummer
raschummer@
whitelightcomputing.com

Rick Schummer is the president
and lead geek at White Light
Computing, Inc. headquartered
in southeast Michigan, USA.
He prides himself in guiding
his customer’s information
technology investment toward
success. He is a co-author of
Visual FoxPro Best Practices for
the Next Ten Years, What’s New
in Nine: Visual FoxPro’s Latest
Hits, Deploying Visual FoxPro
Solutions, MegaFox: 1002 Things
You Wanted to Know About
Extending Visual FoxPro, and
1001 Things You Always Wanted
to Know About Visual FoxPro.
He is regular presenter at user
groups in North America and has
enjoyed presenting at GLGDW,
Essential Fox, VFE DevCon,
Southwest Fox, German DevCon
and Advisor DevCon conferences.
You can find all of his developer
tools at his company Web site:
http://whitelightcomputing.com

Figure 1: You can run the Upsizing Wizard directly from the
Sedna version of the Data Explorer.

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
0

5
2

Upsizing Simplified

19www.code-magazine.com

wizard. Since the CTP is pre-
beta, it does not overwrite the
existing wizard with the CTP
version. The fi nal version of the
Sedna components will have
the new wizard connected to
the menu.

You can also run the Upsizing
Wizard in the Command win-
dow:

DO UpsizingWizard.app

The wizard accepts three op-
tional parameters if you want
to control how it runs: name
and path of the source data-
base container, the name of the
target database in SQL Server,
and a logical parameter indicat-
ing whether the target database
is new or not. Using these pa-
rameters you can call the wiz-
ard programmatically as part of
a migration process or from a
custom developer menu.

You can also use the Data
Explorer (Figure 1) to call
the Upsizing Wizard from the
shortcut menu for VFP Database connections.
Starting the Upsizing Wizard this way selects the
local database and creates the target database
for you.

The Fox Team didn’t make signifi cant changes to
step one (select local database). You only upsize
one database at a time. The listbox shows all open
database containers. You can use the Open… but-
ton to open up another database and add it to the
list. Select the VFP database you want to upsize and
move on to step two.

Next you’ll select the destination database (Fig-
ure 2) to defi ne the connection to SQL Server.
In previous versions of the Upsizing Wizard you
could use a predefi ned ODBC Data Source Name
(DSN) or a VFP connection in the database con-
tainer you are upsizing. The Sedna version still
retains the VFP database connection option, but
now allows you to select any VFP database, not
just the one you are upsizing. You do not upsize
two different databases. Rather, you use the con-
nection in the second database container to con-
nect to the SQL Server. If you select the ODBC
route you get the option of using a predefi ned
DSN, a helpful connection string generation tool,
or you can just code the connection string di-
rectly. These changes give you more options and
you get to predefi ne the way you want the security
handled for logins on one dialog. The fl exibility
set up for the destination database is very useful
when testing out the upsizing process or you need
to convert multiple databases residing on differ-
ent servers.

In step three you name the target database. You also
indicate if the database already exists on the SQL
Server or not. If it does, the Upsizing Wizard pres-
ents you with a drop down list of databases for the
server selected in step two. If the database doesn’t
exist, you enter in the name you want for the data-
base. If you enter a name for a new database that
already exists you will not be able to move to the
next step until this is corrected.

Step four (Figure 3) is where you indicate what ta-
bles and views to upsize and how you want to map
the column data types and sizes. I really like having
the selection of tables/views
and the column details on one
page. This consolidation saves
time moving back and forth
when you determine which ta-
bles you want to migrate. If you
want to work with columns
from a specifi c table, fi rst select
the table and the Upsizing Wiz-
ard will refresh the column grid
with column details.

Like in the old Upsizing Wiz-
ard, you still get the same set-
tings for the column details
with the option to change the
data type for the server side
from the default mapping to one that meets your
needs. If you change the data type and the column
is part of a relation, you get a warning to change
the related columns in the other tables just like
the older version. The Sedna Upsizing Wizard also

I think after reading
this article on the Sedna version of
the Upsizing Wizard you will try it.

The Senda Upsizing Wizard
does a much better job upsizing

not only the structures, but a better
and quicker job of migrating the

data up to SQL Server.

Figure 2: There are many new choices when you select the destination database including the ability to pick different SQL Servers
available on the network when you are building a connection string.

Upsizing Simplified

20 www.code-magazine.com

lets you determine if the column can accept null
values or not on the SQL Server side.

Step fi ve (Figure 4) lets you set some upsizing op-
tions. Notable differences in the Senda Upsizing
Wizard include the ability to select the location of
the upsizing report output, the ability to determine
if you want to use bulk inserts if you are uploading

data (highly recommended),
and if you want blank FoxPro
dates to be upsized as a NULL
or if you want it to work like
the old upsizing wizard and
have it change blank dates to
January 1, 1900. (I’ll discuss
more details on this feature
in the Upsizing Improvements
section later in this article).

I have observed the huge performance improve-
ments the bulk XML insert brings to the process.
It is really impressive. Doug Hennig (http://dough-
ennig.blogspot.com) blogged about this on July 7,
2006 in an entry titled SQLXMLBulkLoad Rocks!
His testing in one case demonstrated the load tak-
ing 10% of the time it took to load with direct table
inserts saving him over 100 minutes.

Step fi ve of the Sedna Upsizing Wizard offers an-
other new feature I recommend—changing the loca-
tion of the output folder. Prior to the Sedna Upsiz-
ing Wizard, Microsoft had hard-coded the output
folder as your current default folder plus a folder
named “Upsize”. If you are like me, you are not al-
ways sure what your current folder is set to, or you’d

like to know where the Upsizing
Wizard put the output it created,
so make sure to pick the folder.
Otherwise you may fi nd out the
wizard overwrote some output
you wanted to retain.

Step six provides the fi nal three
choices before you perform
the database upsizing. You can
choose to upsize the database,
just create scripts and docu-
mentation for the upsizing pro-
cess, or do both. There is no
change in the last step of the
wizard.

Click fi nish to begin the process.
You’ll see a progress bar show-
ing how far along you are and a
message box when the wizard
is fi nished. I am still amazed
when I look into SQL Server
and see the database with all
the data migrated. I have writ-
ten numerous data conversion
programs over the years and
know all the problems you can
run into when running conver-
sions. This generic wizard has
not failed me in converting ev-

ery VFP database I have thrown at it. The most
impressive part is the fact I am testing it with a
pre-beta version and it appears to be very stable.
Naturally, your mileage might vary so I highly rec-
ommend that you test the Sedna Upsizing Wizard
so the team at Microsoft can iron out as many of
the hidden problems as possible before the fi nal
release.

Upsizing Improvements

Microsoft has introduced a few subtle changes to
the way the Upsizing Wizard upsizes the data un-
der the hood. I already mentioned the signifi cant
performance improvement of the upsizing based on
how it uses bulk XML loading of the data into SQL
Server.

Another signifi cant improvement in Sedna address-
es a complaint developers had about the way the
previous Upsizing Wizard upsized character fi elds
in VFP into SQL Server Varchar fi elds. In VFP a
character fi eld is always the same length no matter
how much data the user or application entered into
the fi eld. The fi eld is always right fi lled with spaces.
When the old version of the Upsizing Wizard up-
sized this data it passed the extra spaces along to a
Varchar fi eld. This completely defeated the purpose
of the Varchar fi eld in SQL Server. The Sedna ver-
sion of the wizard trims the spaces for all Character
fi elds upsized to a Varchar fi eld. This will save space
in the SQL Server database and save developers
from creating post conversion routines to clean out
the extra spaces.

I have observed the huge
performance improvements

the bulk XML insert
brings to the process.

Figure 3: In step four you’ll make all the decisions with respect to what tables and views are upsized and how you want the
columns to be on the SQL Server side.

Upsizing Simplified

21www.code-magazine.com

Another data issue with the
old wizard is related to VFP
Date and DateTime fi elds with
respect to empty dates ({}, {//}
or {// ::}). The concept of an
empty date does not exist in
SQL Server. DateTime fi elds
are either fi lled in with a date
or must be NULL. The previ-
ous version of the Upsizing
Wizard upsized empty dates
to January 1, 1900. You can
control the way the Sedna Up-
sizing Wizard handles empty
dates in step fi ve of the wizard
user interface, or by setting
the upsizing engine Blank-
DateValue property if you are
handling upsizing program-
matically.

The last two changes to the
upsizing process are related
to the way SQL Server deals
with table names and column
names. VFP developers oc-
casionally run across tables
designed with columns using
a reserved SQL keyword al-
though it is not recommended
and defi nitely violates best
practices. The old Upsizing Wizard did not handle
this well. The Sedna version of the wizard auto-
matically delimits the columns with brackets when
it comes across keyword named columns during
the upsizing process.

Microsoft will also fi x a bug in the older Upsizing
Wizard that occurs when you upsize tables with a
space in the name. The original Upsizing Wizard
replaced the spaces with an underscore (_). For
instance, it would upsize “Customer History” as
“Customer_History” which could break things like
views and your application code. The new wizard
upsizes the table name with the spaces.

Upsizing Engine

The Visual FoxPro team separated the Upsizing
Engine from the user interface to allow developers
to programmatically control the upsizing process
without user interaction.

I already discussed how you can pass three param-
eters to the UpsizingWizard.APP fi le when you
run it. You can use two other ways to control and
extend the Sedna Upsizing Wizard: programmatic
control of the UpsizingEngine object, and creating
an UpsizeExtension object.

Look at the two programs included in the article
downloads (not in the October 2006 CTP) and in
future releases of the Sedna Upsizing wizard. For
more details on an update see the sidebar, Post-
CTP Update. The programs show you the way you

Figure 4: Step five is where you determine the attributes to upsize, any changes to make locally, control the speed of the data load,
how blank dates are handled, and if the report output is created and where it gets stored.

Post-CTP Update
Doug Hennig will post an
update to the Upsizing Wizard
released in the October 2006
CTP. This release fixes a couple
of minor issues and includes
the TestEngine.PRG and the
TestExtension.PRG missing in the
October CTP release.

You can find this update on the
Stonefield Systems Group White
Papers and Source Code page:
http://www.stonefield.com/
techpap.html

programmatically control the engine and extend
it with the UpsizeExtension object. Both pro-
grams have a lot of comments included to guide
you through the process of customizing it for your
needs. In fact, you’ll fi nd lots of comments that
start with “*// Customization” with notes on why
you might want to make changes and what value
you want to set.

TestEngine.PRG demonstrates the properties you
can set in the UpsizeEngine and the methods you
need to call if you want to execute that behavior.
TestEngine.PRG demonstrates upsizing the VFP
Northwind database to a SQL database called
“YYY” using no UI whatsoever. Note: you'll have
to change the assignment to lcConnString and the
SET PATH statement to match the proper settings
on your system. You can review the code to see
how this all works, but I want to highlight just a
few sections of the code to give
you a taste of how simple it is to
work with the UpsizeEngine ob-
ject.

After the program successfully
connects to the SQL Server, it
instantiates the UpsizeEngine ob-
ject:

loEngine = NEWOBJECT('UpsizeEngine','WizUsz.prg')

At this point you can start setting some properties
to defi ne the behavior of the upsizing process and
then call a couple of key methods. The TestEngine
code shows how few properties you have to set to

Upsizing Simplified

One significant complaint
addressed is the way character

fields in VFP are upsized into SQL
Server Varchar fields.

22 www.code-magazine.com

defi ne class UpsizeExtension as Custom
 function CreateTargetDB(toUpsizeEngine)
 messagebox('In CreateTargetDB method')
 endfunc

 function AnalyzeFields(tlAllTables, ;
 toUpsizeEngine)
 messagebox('In AnalyzeFields method')
 endfunc

 function SendData(toUpsizeEngine)
 messagebox('In SendData method')
 endfunc

 function AnalyzeIndexes(toUpsizeEngine)
 messagebox('In AnalyzeIndexes method')
 endfunc

 function CreateIndexes(toUpsizeEngine)

 messagebox('In CreateIndexes method')
 endfunc

 function CreateTriggers(toUpsizeEngine)
 messagebox('In CreateTriggers method')
 endfunc

 function CreateScript(toUpsizeEngine)
 messagebox('In CreateScript method')
 endfunc

 function BuildReport(toUpsizeEngine)
 messagebox('In BuildReport method')
 endfunc

 function UpsizeComplete(toUpsizeEngine)
 messagebox('In UpsizeComplete method')
 endfunc
enddefi ne

Listing 1: Partial code listing of the UpsizeExtension object defined in the TestExtension program

upsize a database. I have detailed some of these
properties in Table 1 and some of the methods used
to set properties in Table 2.

Once you’ve set all the properties you populate
the various lists with the items you want converted

(tables, views, relationships, indexes, and fi elds).
You accomplish this using a couple of key methods
(Table 2) and then you call one method to kick off
the upsizing process:

loEngine.ProcessOutput()

The example code also shows how you can use the
VFP BINDEVENTS() function to hook in your
own behavior to the initialization process, the up-
date process, and the completed process:

BINDEVENT(loEngine, 'InitProcess', ;
 SomeObject, 'InitProcess')
BINDEVENT(loEngine, 'UpdateProcess', ;
 SomeObject, 'UpdateProcess')
BINDEVENT(loEngine, 'CompleteProcess', ;
 SomeObject, 'CompleteProcess')

You create the SomeObject reference and bind it to
the different methods of the UpsizeEngine object.
The UpsizeEngine object raises the three events
using RAISEEVENT(), which in turn delegates to
your code.

The TestExtension program is almost identical to
the TestEngine program, with one caveat; it cre-
ates a second object known as an UpsizeExten-
sion object (Listing 1) and assigns the reference
to this object to the oExtension property of the
UpsizeEngine object. The object follows the hook
design pattern. Inside the UpsizeEngine object are
methods with the same name as the UpsizeExten-
sion object. The methods in the UpsizeEngine ob-
ject look at the UpsizeExtension object if it is set

Property Description

lQuiet Flag you set to true (.T.) if you want the upsizing process to
run without a user interface and false of you want the user
interface.

MasterConnHand Reference to the connection you have opened to SQL
Server

ServerVer This is the version of SQL Server. You can set this
automatically by calling the UpsizeEngine object method
GetServerVersion() as long as the MasterConnHand
property is set to open connection.

SourceDB VFP database container you are upsizing. Note: you need
to open this database container to perform the upsizing.

ServerDBName Target database name.

CreateNewDB Set to true (.T.) if you want this to be a new database, or
false (.F.) if you want to overwrite an existing database.

DoUpsize Tells the Upsizing Engine to run the upsizing process.

DoScripts Tells the Upsizing Engine to generate the upsizing scripts
and save them to a folder specifi ed by the property
NewDir.

DoReport Tells the Upsizing Engine to generate the upsizing analysis
reports and save them to a folder specifi ed by the property
NewDir.

Overwrite Set to true (.T.) if the tables, views, etc. are overwritten in
the SQL Server database.

BlankDateValue The value stored in date time fi elds when a blank date is
upsized.

NormalShutdown Set to false (.F.) if you want the analysis tables to not be
deleted after the upsizing is done.

HadError Is set true (.T.) by the engine if errors occur during the
process. This allows you to message the developer as
appropriate.

Table 1: A partial list of the properties in the Sedna Upsizing Wizard engine object and how they affect the
behavior of the upsizing process.

I think you might be
getting the idea that the upsizing

engine is extremely powerful
and extremely extensible in true

VFP tradition.

Upsizing Simplified

23www.code-magazine.com

and check for the method on the UpsizeExtension
object. If it exists, the method in the UpsizeExten-
sion object is run. This is very similar to the event
handling with COM objects and implementing the
programming interface of the COM object. Note:
you do not have to defi ne every function in the Up-
sizeExtension object that resides in the UpsizeEn-
gine object. You only have to defi ne the methods
you want to extend.

I think you might be getting the idea that the up-
sizing engine is extremely powerful and extremely
extensible in true VFP tradition.

Microsoft released the source code for the Sedna
Upsizing Wizard with the October CTP and will
release the fi nal version when Sedna ships. This
means you can review it, extend it, and enhance it.
I anticipate that if there is enough interest in the
Fox Community, this could become a project in the
open source project VFPX (http://www.codeplex.com/
Wiki/View.aspx?ProjectName=VFPX).

Conclusion

The Sedna Upsizing Wizard will become a viable
choice for VFP developers when it comes to creat-

Method Description

GetServerVersion() Returns the version of SQL Server. It is a good idea to
store the returned value in the ServerVer property.

AnalyzeTables() Populates the list of tables available for upsizing.

ReadViews() Populates the list of views available for upsizing.

AnalyzeFields() Populates the list of fi elds for the tables and maps the
default data types used in the upsizing.

AnalyzeIndexes() Populates the list of indexes with default settings for index
migration.

ProcessOutput() Run the upsizing process.

Table 2: A partial list of the methods of the Sedna Upsizing Wizard engine object and actions they perform
during the upsizing process.

ing a strategy to migrate Visual FoxPro database
containers to SQL Server 2000 and SQL Server
2005. In the best case you have designed your VFP
database just as you want it in SQL Server and
all you have to do is run the wizard. Those data-
bases that need a bit of reengineering will not be
as simple to upsize, but the scripts generated by
the wizard might be useful as the last step of your
migration.

Rick Schummer

Upsizing Simplified

24 www.code-magazine.com

Today more and more applications interact and
communicate via Web services either as clients
or as publishers. It’s becoming quite common

for many application development scenarios to in-
clude Web service functionality as an integral part
of the development process. The
good news is that Web service
technology has stabilized and
today interoperability is much
better. It’s much easier to call
a Java Web service from .NET
or Visual FoxPro than it was
in the early days of constantly
moving standards and incom-
patible Web service platform
implementations. Over time Web services have also
become more complex, especially in regards to the
data that is sent over the wire. It’s very common
today to have Web services that send complex mes-
sages that contain many nested types of information
in single messages.

The State of FoxPro Web Services

For Visual FoxPro developers, dealing with complex
Web services has always been problematic because
the default tool that is natively available through
COM—the SOAP Toolkit—is limited. Whether
you’re building or consuming Web services in Vi-
sual FoxPro, your fi rst stop likely takes you to the
Soap Toolkit. Visual FoxPro ships and installs this
COM-based tool. FoxPro’s internal Web service cli-
ent and server Wizards both rely on it to publish
and consume Web services. The SOAP Toolkit is a
pretty crude tool by today’s standards—it provides
only the bare basics of Web service interoperability
and can’t easily deal with Web services that need
to consume complex types or need to use extended
Web service protocols like the WS-* Web service
specifi cations.

If you’re using the SOAP Toolkit to consume Web
services that are returning anything but simple type
values you will quickly fi nd that it’s pretty tedious
to deal with the data that is returned, as you end up
having to parse the XML messages on your own.
Alternately you can also resort to implementing
convoluted type interfaces using the SOAP Toolkit’s

Visual FoxPro
Web Services Revisited
Web services with Visual FoxPro (VFP) have never been easy.
The most common Web service tool for FoxPro is the SOAP Toolkit, which has been
discontinued and which had a host of problems when dealing with complex types
passed over Web services. In this article I’ll show how you can leverage the powerful
Web service features of .NET and the new Windows Communication Foundation in
your FoxPro application through COM Interop.

extension interfaces that allow mapping of classes.
However, this process is almost more work than
parsing the XML data. In my experience this lack
of support for complex types is a major stumbling
block as almost all Web services that are published

by providers commercially are
based on complex message
types using objects, arrays or
collections, and enumerations,
none of which are handled na-
tively by the SOAP Toolkit.

For publishing Web services
the SOAP Toolkit fares no bet-
ter—it provides the ability to use

either an ASP or ISAPI listener to publish COM
objects as Web services. Although Visual FoxPro’s
Web service Wizard does a decent job of publish-
ing simple Web services, the services published are
limited in that you can’t easily publish anything
but simple types from your exposed service meth-
ods. Add to that some limitations in Visual FoxPro
to expose nested types to COM and it becomes
very diffi cult to publish any content that requires
anything but single hierarchy objects. This may be
workable in simple scenarios or in FoxPro-to-Fox-
Pro calling scenarios where you can often use raw
XML strings to pass data across applications, but
for many Web service and Service Oriented Archi-
tecture (SOA) scenarios that need to interact with
non-FoxPro applications, this limited functionality
is not adequate.

The last straw for the SOAP Toolkit, however, is the
fact that it is no longer offi cially updated or sup-
ported by Microsoft. All new development on it has
stopped so there won’t be any future improvements
or bug fi xes (other than critical hotfi xes for secu-
rity), so it won’t keep up with the latest standards
should they change.

This makes the SOAP Toolkit a somewhat volatile
solution, especially if you are interoperating with
Web services from the Java and .NET platforms,
which are constantly changing and updating to the
latest standards. Currently the SOAP Toolkit is still
in line with the latest SOAP 1.2 specifi cation, but it
doesn’t deal with any of the WS-* specifi cations or
any of the upcoming SOAP 2.0 specifi cations.

This article covers publishing
and consuming

of Web services with Visual
FoxPro and .NET

using COM Interop.

Fast Facts

Rick Strahl
Rick Strahl is president of West
Wind Technologies in Maui,
Hawaii. The company specializes
in Web and distributed
application development and
tools, with focus on Windows
server products, .NET, Visual
Studio, and Visual FoxPro. Rick
is the author of West Wind Web
Connection, West Wind Web
Store, and West Wind HTML
Help Builder. He’s also a C#
MVP, a frequent contributor
to magazines and books, a
frequent speaker at international
developer conferences, and the
co-publisher of CoDe Magazine.
For more information please
visit his Web site at
www.west-wind.com or contact
Rick at rstrahl@west-wind.com

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
0

6
2

Visual FoxPro Web Services Revisited

25www.code-magazine.com

Using .NET to Provide a Web Service
Bridge

Microsoft’s offi cial recommendation for Web ser-
vices is to use .NET to access and publish Web ser-
vices. .NET is Microsoft’s preferred Web services
platform where all future development and support
for new technologies is implemented, so Microsoft
is recommending that developers use .NET in com-
bination with COM for non- .NET technologies like
Visual FoxPro. While this may seem arrogant at fi rst
it makes sense in that the .NET 2.0 Web services
stack and Windows Communications Foundation
(WCF) are .NET-only technologies.

Web Service Client

For FoxPro developers, creating a .NET Web ser-
vices client means that you can create a .NET Web
service client and use COM Interop to interact
with this generated proxy object from FoxPro.

This process is not diffi cult. The process actually
makes the experience of consuming Web services
easier than with the SOAP Toolkit because .NET
deals much better with complex Web services
and provides a strongly typed interface to them,
including automatic message type creation (pa-
rameters and return values) and full IntelliSense
support. In many cases you can simply pass the
complex result messages back to Visual FoxPro
and access them directly over COM.

You can drive the Web service proxy either di-
rectly from FoxPro by passing the proxy back to
FoxPro over COM or by creating a shim (meth-
ods in .NET code that act as front ends to the
Web service). The latter is more work, but pro-
vides more fl exibility through abstracting the Web
service with a client interface that can handle er-
rors, perform data conversions, and protect client
code from future implementation changes of the
service.

Web Service Publishing

.NET also supports easy publishing of Web ser-
vices through the ASP.NET ASMX framework.
ASMX Web services—named for the fi le extension
that is used—are a special ASP.NET handler that
can execute Web service classes and expose these
classes to the Web. Like ASP.NET you can use

COM Interop to access FoxPro code from these
ASMX Web services.

The process to do this is straightforward as you sim-
ply create a FoxPro COM object and call it from the
Web service methods. The actual Web service class
uses .NET code; typically, it only uses a little bit of
code to call the FoxPro business logic to generate
the result for the Web service methods. .NET man-
ages all the type serialization as well as automatic
generation of the service metadata, which is the
WSDL defi nition for the service.

It’s easy to create FoxPro COM objects for use in
.NET; however, the administrative aspects of going
to COM Interop from ASP.NET are tricky as you
have to set proper permissions for COM compo-
nents and any fi les that need to be accessed. Debug-
ging is also diffi cult as FoxPro COM components
run inside of IIS and can’t be easily debugged or
shut down. If you’re new to COM and dealing with
COM in a Web Server environment, this process
can be daunting to work with at fi rst. In the end, it’s
just a mechanical process that you have to remem-
ber and follow—there’s nothing diffi cult about the
process, it’s only tedious.

The big benefi t over the SOAP Toolkit is that you
get a rich, mature, and effi cient Web service frame-
work that makes it fairly easy to create complex
Web services.

Windows Communication Foundation

In addition to native .NET Web services, Micro-
soft recently released .NET Framework 3.0, which
includes Windows Communication Foundation
(WCF). WCF provides a service-based architecture
(SOA) for .NET that, among other things, provides
both Web service client and service support. WCF
expands on the base Web service functionality by
providing extended support for the WS-* extended
Web service specifi cations that provide encryption,
authentication, transaction management, binary
transports and attachments, and much more.

For plain HTTP-based Web services, ASMX ser-
vices and the .NET 2.0 Web service client are easier
to use than WCF, but WCF provides a unifi ed ar-
chitecture for creating services for inter-application
communication. The same service architecture that
can publish and access plain HTTP-based Web ser-
vices can also work for more high performance pro-
tocols like raw TCP/IP, Named Pipes, and Message
Queues among others. Essentially by building a ser-
vice once you can expose the service to a variety of
different endpoint protocols with a single code base
and even have all of the protocols be accessible at
the same time.

The SOAP Toolkit
is officially discontinued
and no longer supported

by Microsoft.

Visual FoxPro Web Services Revisited

Read this entire article online at

http://www.code-magazine.com/focus/vfp/

Ready to Adopt .NET?

www.VFPConversion.com

EPS
Can Help!
EPS Software provides:

Conversion Services
Application Analytics
Mentoring
Project Management
Situation Assessment
Training
VFP Conversion Tools
• Forms Converter
• Reports Converter
• Expression Evaluator
• Project Analyzer
• Data Access Conversion
• Milos Components

Contact us at:
Info@VFPConversion.com
866-529-3682

28 www.code-magazine.com

using System;
using System.Diagnostics;

namespace DotNetLauncher
{
 static class Program
 {
 /// <summary>
 /// The main entry point for
 /// the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Process.Start("VFPApp.exe");
 }
 }
}

Listing 1: The C# code used in Program.cs to launch
VFPApp.exe, an external Visual FoxPro application

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
0

7
2

ClickOnce, Microsoft’s newest deployment
technology, allows developers to publish an
application on a server so users can install the

application by clicking a hyper-
link in a Web page. And not
only can you use a ClickOnce
deployment strategy to initially
install a distributed application,
but you can also use ClickOnce
to issue updates by merely in-
crementing the publish version
number in the Visual Studio
project and then republishing
it. Users install the application –Click! Users run the
application – Click! Users receive update notifi ca-
tions –Click! ClickOnce strives to make deploying
and updating desktop applications as easy as updat-
ing and visiting a Web page.

Using ClickOnce to Deploy Visual
FoxPro Applications

How does ClickOnce apply to Visual FoxPro ap-
plications? Isn’t it just for Visual Studio projects?
While Microsoft primarily designed ClickOnce for
Visual Studio applications, Visual FoxPro develop-
ers can take advantage of the benefi ts ClickOnce
provides by using the information contained in this
article. Let me take you on a tour of ClickOnce
from a Visual FoxPro developer’s perspective.

Create a Visual FoxPro Project

Creating a Visual FoxPro application that you
want to deploy using ClickOnce does not require
any additional steps in Visual FoxPro than you
would normally go through to create a project and
build an application from it. The brunt of the de-
ployment and confi guration work is either already
provided for by ClickOnce or can be accomplished
using Visual Studio 2005 and an install builder
such as InstallShield or Inno Setup. A distributed
application that is in dire need of a good deploy-
ment solution is a prime candidate for ClickOnce
deployment.

On the off-chance that there is someone reading
this article who doesn’t know how to create a Win-

Welcome to the Future
of Deployment
You can use ClickOnce to revolutionize how you install and
update Visual FoxPro (VFP) applications. A dream come true, ClickOnce
can put a stop to many of the deployment nightmares associated with distributing
applications.

dows desktop application in Visual FoxPro, here
are the steps.

1. Open up Visual FoxPro 9.0
and click New on the stan-
dard toolbar.

2. Select the Project option
button in the New dialog box
and then click New File.

3. Save the project. The project
I’ll create and use for this ar-
ticle (available in the down-
load) is called vfpapp.pjx.

4. Next, in the Project Manager for the project,
switch to the Documents tab and add a new
form to the project.

5. Set the form’s WindowType property to 1.
6. Drag a label and a button onto the form from

the Forms Controls Toolbar.
7. Change the Caption property of the label to

Version 1.0 and the Caption property of the
button to close.

8. Next open the button’s Click event and add a
Thisform.Release() to it. You’ve developed the
application.

9. Save the Visual FoxPro form by closing the
form and click Save when prompted.

ClickOnce strives to
make deploying and updating

desktop applications as easy as
updating and

visiting a Web page.

Fast Facts

Craig Boyd
craig@sweetpotatosoftware.
com
651.982.0777

Craig Boyd is the CEO of Sweet
Potato Software, Inc. (SPS) and
a Microsoft Visual FoxPro MVP.
Craig has years of experience
developing applications for US
and international clients. He
specializes in helping other
software companies meet
challenging deadlines, solve
complex problems, and upgrade
project interfaces. Craig has built
a solid reputation for getting jobs
done on time and within budget.
When he‘s not working on client
projects, writing blog entries, or
helping members of the Visual
FoxPro Community out on the
forums, he writes magazine
articles for technical publications.

Figure 1: Form1 of a simple Visual
FoxPro application to deploy and
update using ClickOnce. Note the
“Version 1.0” label so you can see
when ClickOnce has updated the
application.

Welcome to the Future of Deployment

29www.code-magazine.com

10. Before closing Visual FoxPro, compile the
project into an executable by clicking Build on
the Project Manager dialog box. Assuming you
had no errors, VFP will create a vfpapp.exe fi le
in the project directory.

When fi nished, the form should look similar to
the one shown in Figure 1. The application in-
cludes the label so that when you update the
application you can easily see the version. Now
that you’ve created the Visual FoxPro application
you want to distribute, a ClickOnce application
(that will act as a loader for your Visual FoxPro
application) will be created in Visual Studio.
A ClickOnce application is essentially any appli-
cation that someone has deployed using Click-
Once. This article explains how to deploy a Click-
Once application from a C# perspective. While
the code syntax is different, most of the steps are
either exactly the same or somewhat similar in
Visual Basic.

Create a Visual Studio Project

The following steps are used to create a new C#
project in Visual Studio 2005:

1. Open Visual Studio 2005.
2. Create a new project by clicking the New Proj-

ect button on the standard toolbar, or alter-
nately from the File menu click New.

3. Select the C# Windows Application template
in the New Project dialog box.

4. Type in a name for the project. For this article I
named the project DotNetLauncher (Figure 2).

5. Click OK and Visual Studio will create the C#
project.

With the DotNetLauncher project
open in Visual Studio 2005, go into
the Solution Explorer and delete the
C# form that Visual Studio automati-
cally generated with the new project
by right-clicking on the form item in
the Solution Explorer and selecting
Delete (Figure 3). Add the Visual
FoxPro application created earlier
and the Visual FoxPro runtimes
to the DotNetLauncher project as
shown in Figures 4 and 5. There is
a much better way to distribute the
Visual FoxPro runtimes than add-
ing them directly to the .NET proj-
ect, and I will explore this preferred
method of inclusion/deployment in
the Bootstrapper section later in this
article.

Once you’ve added the runtimes to
the DotNetLauncher project, open
the main C# program fi le named
Program.cs and replace its contents
with the code in Listing 1. Note in
the code that the main entry point of
the .NET application uses the static

Start method of the System.Diagnostics.
Process class to start the vfpapp.exe. This
.NET assembly will act as a launcher/
loader for the vfpapp.exe. The DotNet-
Launcher is now ready to be built and
published using the ClickOnce features
available in Visual Studio.

Figure 2: New Project dialog box in Visual Studio 2005. You’ll use the C# Windows Application template
to create the DotNetLauncher project.

Figure 3: You can delete the default
form created by Visual Studio since the
DotNetLauncher won’t use it.

Figure 4: Add the Visual FoxPro application and runtime files to the
DotNetLauncher application by right-clicking on the project in the Solution
Explorer and selecting Add -> Existing Item.

Figure 5: The Solution Explorer shows what
the DotNetLauncher application looks like after
you’ve added the Visual FoxPro application and
runtimes files.

Welcome to the Future of Deployment

Read this entire article online at

http://www.code-magazine.com/focus/vfp/

30 www.code-magazine.com

In his MDSN article “Navigate the .NET Frame-
work and Your Projects with My” (http://msdn.
microsoft.com/msdnmag/issues/04/05/Visual-

Basic2005/default.aspx), Duncan Mackenzie pro-
vides an example of why My is a great addition to
Visual Basic (VB). Instead of writing the following
to read the contents of a text fi le:

Dim sr As New IO.StreamReader("c:\fi le.txt")
contents = sr.ReadToEnd
sr.Close()

you can write this:

contents = _
 My.Computer.FileSystem.ReadAllText("c:\fi le.txt")

Thanks to IntelliSense on the
My namespace, not only is it
easier to fi gure out how to do
this task, it’s also less code to
write and debug.

Sedna includes a My namespace
as well, for the same reasons
that VB 2005 does. Many of
the My classes are wrappers
for SYS() functions, Windows
API functions, Windows Script
Host properties and methods,
and so on. For example, the
Play method of Audio, which
plays an audio fi le, is a wrapper
for the sndPlaySound Windows
API function. So, without hav-
ing to DECLARE this function or even know it ex-
ists, your VFP application can play a sound fi le. You
can replace this code:

#defi ne SND_SYNC 0
declare integer sndPlaySound in WinMM.dll ;
 string lpszSoundName, integer uFlags
sndPlaySound(SoundFile, SND_ASYNC)

with this:

My.Computer.Audio.Play(SoundFile)

In the article, I’ll introduce My in Sedna, showing
you some of the namespaces available. I’ll also de-

scribe in detail how My controls IntelliSense to dis-
play just the members of the namespace you want
to see, and how it dynamically instantiates a class
hierarchy at run time. Finally, I’ll show you how to
extend My to add your own classes as namespaces
so they’re easily accessible.

Introduction to My

My is included with the Sedna Community Technol-
ogy Preview (CTP) available from the VFP Web site
(http://msdn.microsoft.com/vfoxpro). You must register
My with IntelliSense before you can use it; to do so,
run My.APP. You can then type “LOCAL My as” in
a code window and choose My from the list of types
that appears. The following code is automatically

inserted:

local My as My
My = newobject('My', 'my.vcx')

Type “My.” to see a list of the
namespaces available within
My. They are:

• App: provides application
methods and properties, in-
cluding Execute to open a fi le
such as an HTML document.

• Computer: provides access
to various components of the
computer system, including
the fi le system, audio, print-
ers, and Registry.

• Data: provides data-handling features, such as
methods to close all cursors opened by some
code.

The My Namespace in Sedna
New to Sedna, Visual FoxPro emulates the My namespace
first introduced in Visual Basic 2005. The My namespace makes .NET
Framework classes more discoverable and allows you to write less code. Sedna, the
next version of Visual FoxPro (VFP), includes a My namespace as well, for the same
reasons. In this article, I’ll look at how Sedna implements My.

New to Sedna, Visual FoxPro
emulates the My namespace first
introduced in Visual Basic 2005.
It makes complex tasks, such as
downloading files from Web sites
or determining the location of a

user’s MyDocuments folder,
both discoverable and easy.

Even better,
it’s data-driven and

extensible so you can add
your own classes.

Fast Facts

Doug Hennig
dhennig@stonefield.com

Doug Hennig is the author of
the award-winning Stonefield
Database Toolkit (SDT), the
award-winning Stonefield Query,
the MemberData Editor, Anchor
Editor, and CursorAdapter and
DataEnvironment builders that
come with Microsoft Visual
FoxPro, and the My namespace
and Upsizing Wizard in Sedna.
Doug is co-author of the What’s
New in Visual FoxPro series
(the latest being What’s New in
Nine) and The Hacker’s Guide to
Visual FoxPro 7.0, available from
Hentzenwerke Publishing
(http://www.hentzenwerke.com)

Doug has spoken at every
Microsoft FoxPro Developers
Conference (DevCon) since 1997
and at user groups and developer
conferences all over the world.
He is one of the administrators
for the VFPX community
extensions Web site (http://
www.codeplex.com/Wiki/View/
aspx?ProjectName=VFPX).

Doug has been a Microsoft Most
Valuable Professional (MVP) since
1996 and was named the 2006
winner of the FoxPro Community
Lifetime Achievement Award.
His Web sites are http://www.
stonefield.com and http://
www.stonefieldquery.com, and
his blog is at http://doughennig.
blogspot.com

The My help file, My.CHM,
documents the My namespaces

and their properties
and methods in detail,
including sample code.

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
0

8
2

The My Namespace in Sedna

31www.code-magazine.com

• Settings: provides methods to save and restore
application settings, such as form size and po-
sition and user confi guration settings. Interest-
ingly, this class saves settings in an XML fi le
using the same schema as VB’s My.

• User: provides information about the current
user, such as their full name and domain.

The My help fi le, My.CHM, documents these
namespaces and their properties and methods in
detail, including sample code.

To use My in a development environment, be sure
to SET PATH to the directory containing My.VCX.

Examples

The sample form for this article (see the Download
sidebar) demonstrates some of the My classes. For
example, the following code in Init restores the for-
mer size and position of the form:

local My as My
This.oMy = newobject('My', 'my.vcx')
My = This.oMy
if fi le('sample.xml')
 My.Settings.Load('sample.xml')
 if My.Settings.Exists('FormTop')
 This.Top = My.Settings.FormTop
 This.Left = My.Settings.FormLeft
 This.Height = My.Settings.FormHeight
 This.Width = My.Settings.FormWidth
 endif My.Settings.Exists('FormTop')
endif fi le('sample.xml')

Note this code instantiates My into a form property
so it’s available in any method requiring My but the
code declares the local variable My of type My and
stores the form property into that variable so Intel-
liSense works properly.

The code in Destroy saves the form size and position:

local My as My
My = This.oMy
My.Settings.Add('FormTop', This.Top)
My.Settings.Add('FormLeft', This.Left)
My.Settings.Add('FormHeight', This.Height)
My.Settings.Add('FormWidth', This.Width)
My.Settings.Save('sample.xml')

Init also uses properties of My.Computer.FileSystem.
SpecialDirectories, such as Desktop and MyDocu-
ments, to populate a list of the locations of certain
directories on your system.

The Click method of the Download File button
downloads and displays an HTML document:

local My as My
My = Thisform.oMy
lnResult = ;
 My.Computer.Network.DownloadFile('http://' + ;
 'downloads.stonefi eld.com/pub/repobj.html', ;
 'repobj.html')

if lnResult = 0
 My.App.Execute('repobj.html')
else
 messagebox('File download failed.')
endif lnResult = 0

Note the simplicity of this code: you don’t have to
know what Windows API function to call to down-
load a fi le from a Web site or to display an HTML
document in a browser.

How My Works

Two things make My useful: IntelliSense at design
time and the class hierarchy at run time.

IntelliSense for My

IntelliSense is easily the best feature ever added
to Visual FoxPro. For VFP developers, it provides
a greater productivity boost than anything added
before or since. However, one thing that bugs me
about IntelliSense is that when used with a class,
it displays all members of that class rather than the
ones I really want to see.

For example, Figure 1 shows the IntelliSense display
for the ConnectionMgr class. Although this class has
only a few custom proper-
ties and methods that I’m
interested in, IntelliSense
displays everything. This
requires more effort to se-
lect the exact member you
want, especially if you’re
not very familiar with the
class.

However, as you can see
in Figure 2, IntelliSense
on members of the My
namespace shows only
those properties and
methods that I’m actually
interested in.

Figure 1: Although IntelliSense allows you to choose a
member name from a list, it displays more items than you
usually need.

Figure 2: IntelliSense on My members shows only the members of
interest.

The My Namespace in Sedna

32 www.code-magazine.com

* This is main routine that gets called from the IntelliSense
* script for My.

lparameters toFoxCode
local lcNameSpace, ;
 loData, ;
 lcReturn, ;
 lcTrigger
with toFoxCode
 .ValueType = 'V'

* Get the namespace and an object from the My table for that
* namespace.

 lcNameSpace = .Data
 loData = This.GetMyMember(.UserTyped, lcNameSpace)
 lcReturn = ''
 do case

* You couldn't fi gure out which member was specifi ed.

 case vartype(loData) <> 'O'

* If you're on the LOCAL statement, handle that by returning text
* you want inserted.

 case atc(lcNameSpace, .MenuItem) > 0
 lcReturn = This.HandleLOCAL(toFoxCode, lcNameSpace, ;
 trim(loData.Class), trim(loData.Library))

* Other IntelliSense. Start by getting the character that triggered
* IntelliSense.

 otherwise

 lcTrigger = right(.FullLine, 1)
 do case

* If you were triggered by a ".", display a list of members.

 case lcTrigger = '.'
 This.DisplayMembers(toFoxCode, loData)

* If you were triggered by a "(" (to start a method parameter list)
* and the method accepts enumerated values specifi ed in the LIST
* memo, display them.

 case lcTrigger = '(' and not empty(loData.List)
 This.DisplayEnumeratedValues(toFoxCode, loData)

* If you were triggered by a "(" (to start a method parameter
* list), an "=" (for a property), or "," (to enter a new parameter)
* and you have a script, execute it.

 case inlist(lcTrigger, '=', '(', ',') and ;
 not empty(loData.Script)
 lcReturn = execscript(loData.Script, toFoxCode, loData)

* If you were triggered by a "(" (to start a method parameter list)
* or "," (to enter a new parameter), display the parameters for the
* method.

 case inlist(lcTrigger, '(', ',') and not empty(loData.Tip)
 .ValueTip = loData.Tip
 .ValueType = 'T'
 endcase
 endcase
endwith
return lcReturn

Listing 2: The Main method of MyFoxCode does all the work of handling IntelliSense for My

lparameters toFoxcode
local loFoxCodeLoader, ;
 luReturn
if fi le(_codesense)
 set procedure to (_codesense) additive
 loFoxCodeLoader = createobject('FoxCodeLoader')
 luReturn = loFoxCodeLoader.Start(toFoxcode)
 loFoxCodeLoader = .NULL.
 if atc(_codesense, set('PROCEDURE')) > 0
 release procedure (_codesense)
 endif atc(_codesense, set('PROCEDURE')) > 0
else
 luReturn = ''
endif fi le(_codesense)
return luReturn

defi ne class FoxCodeLoader as FoxCodeScript
 cProxyClass = 'MyFoxCode'
 cProxyClasslib = 'Path\my.vcx'

 procedure Main
 local loFoxCode, ;
 luReturn
 loFoxCode = newobject(This.cProxyClass, This.cProxyClasslib)
 if vartype(loFoxCode) = 'O'
 luReturn = loFoxCode.Main(This.oFoxCode)
 else
 luReturn = ''
 endif vartype(loFoxCode) = 'O'
 return luReturn
 endproc
enddefi ne

Listing 1: The code in the DATA memo of the MyScript record in the IntelliSense table executes every time you type My in a code window (in this code, Path is replaced with
the path for My.VCX)

The secret behind My’s IntelliSense lies in two
things: how IntelliSense deals with things defi ned
as “types” in the IntelliSense table and IntelliSense
scripts. The IntelliSense table contains type records
for data types, such as Integer or Character, and
base classes, such as CheckBox and Form. How-

ever, you can defi ne other things, such as custom
classes or COM objects, as types as well, either by
manually adding records with TYPE set to “T” or
using the IntelliSense Manager in the Tools menu.
This provides IntelliSense for these classes or COM
objects. My uses a type record in the table as well,

The My Namespace in Sedna

33www.code-magazine.com

but it also customizes how IntelliSense works using
a script and a custom IntelliSense-handling class.

Look in your IntelliSense table (USE (_FOX-
CODE) AGAIN and BROWSE) after registering
My and you’ll see two new records at the end of the
table. One is the type record for the namespace; it
doesn’t contain much information other than “My”
in the ABBREV and DATA fi elds and “{myscript}”
as the name of the script to use for IntelliSense pur-
poses in the CMD fi eld. The other is a script record,
with TYPE set to “S” and ABBREV containing
“myscript.”

The DATA memo of script record contains the code
shown in Listing 1. This code defi nes a subclass of
the FoxCodeScript class contained in the Intelli-
Sense application specifi ed by the _CODESENSE
system variable. This subclass overrides the Main
method, which IntelliSense automatically calls.
Main instantiates the MyFoxCode class in My.VCX
and calls its Main method, passing it a reference
to the IntelliSense data object. This object con-
tains information about what the user typed and
other IntelliSense settings. As a result of this script,
MyFoxCode.Main executes for all IntelliSense tasks
for My, such as when you select “My” from the In-
telliSense list displayed when you type LOCAL My
AS or when you type one of the “trigger” charac-
ters—such as a period, an opening parenthesis, or an
equals sign—in a statement containing My.

MyFoxCode

The MyFoxCode class does all of the custom Intel-
liSense work for My, so I’ll examine this class in
detail.

The Init method does just two things: turns on de-
bugging in system components (without this, you
can’t easily debug problems in the code) and opens
the My table, which contains
information about the My
namespace members (I’ll dis-
cuss this table in more detail
later), by calling OpenMyTable.
If the table can’t be opened,
Init displays an error message
and returns .F. so the class isn’t
instantiated. Since My uses
a table of members, it’s data-
driven. As you’ll see later on,
having My be data-driven gives
a number of benefi ts.

* Turn debugging on.

sys(2030, 1)

* Open the My table.

local llReturn
llReturn = This.OpenMyTable()
if not llReturn
 messagebox(ccERR_COULD_NOT_OPEN_MY_LOC, ;
 MB_ICONEXCLAMATION, ccCAP_MY_FOXCODE_LOC)
endif not llReturn
return llReturn

As you saw earlier, the IntelliSense script calls the
Main method (Listing 2), passing it a FoxCode
object. Main handles all of the IntelliSense tasks
for My. If the MenuItem property of the FoxCode
object contains “My”, you must be on the LOCAL
My AS statement, so Main calls the HandleLO-
CAL method to deal with it. Otherwise, Main de-

The secret behind My’s
IntelliSense lies in two things:

how IntelliSense deals
with things defined as

“types” in the IntelliSense table
and IntelliSense scripts.

Download
You can download the sample
form discussed in this article
from the Technical Papers page
of my Web site (http://www.
stonefield.com/techpap.html).
This download includes an
updated version of My.VCX that
fixes a couple of bugs in the CTP
version.

* Determine which member of the namespace the user typed and return
* a SCATTER NAME object from the appropriate record in the FFI
* table.

lparameters tcUserTyped, ;
 tcNameSpace
local loReturn, ;
 lcUserTyped, ;
 llFound, ;
 lnPos, ;
 lcMember, ;
 lnSelect

* Grab what the user typed. If it ends with an opening parenthesis,
* strip that off.

loReturn = .NULL.
lcUserTyped = alltrim(tcUserTyped)
if right(lcUserTyped, 1) = '('
 lcUserTyped = substr(lcUserTyped, len(lcUserTyped) - 1)
endif right(lcUserTyped, 1) = '('

* Find the record for the class in the FFI table. If there's a

* period in the typed text, try to fi nd a record for the member.

if seek(upper(padr(tcNameSpace, len(__My.CLASS))), '__My', ;
 'MEMBER')
 llFound = .T.
 lnPos = at('.', lcUserTyped)
 if lnPos > 0
 lcMember = alltrim(__My.MEMBER) + substr(lcUserTyped, lnPos)
 llFound = seek(upper(padr(lcMember, len(__My.MEMBER))), ;
 '__My', 'MEMBER')
 endif lnPos > 0

* If you found the desired record, create a SCATTER NAME object for
* it.

 if llFound
 lnSelect = select()
 select __My
 scatter memo name loReturn
 select (lnSelect)
 endif llFound
endif seek(upper(padr(tcNameSpace ...
return loReturn

Listing 3: The GetMyMember method looks for the member you typed in the My table

The My Namespace in Sedna

34 www.code-magazine.com

termines which character triggered IntelliSense
and calls the GetMyMember method to determine
which My member you typed (it could also be My
itself) and returns a SCATTER NAME object from
the appropriate record in the My table. If the trig-
ger character is a period, you need to display a list
of the registered My members, so Main calls Dis-
playMembers to do the work. If the trigger charac-
ter is an opening parenthesis and the LIST fi eld in
the My table is fi lled in, you’ll call DisplayEnumer-
atedValues to display a list of enumerated values
available for a parameter for the method (similar
to what IntelliSense displays when you type “DB-
GETPROP()”. Finally, if the trigger character is an
opening parenthesis, an equals sign, or a comma
and the TIP memo of the My record is fi lled in,
Main uses the trigger character as the tooltip for
IntelliSense. This displays the signature of a meth-
od, such as “Login(UserName as String, Password
as String) as Boolean.”

Listing 3 shows the code for GetMyMember. This
method, called from Main, looks for the member
you typed in the My table. It uses the UserTyped

property of the FoxCode object (passed as a pa-
rameter), which contains the text you typed per-
taining to the namespace. For example, when you
type:

llStatus = My.Computer.Audio.Play(

UserTyped contains “Computer.Audio.Play”. Get-
MyMember fi nds the record for the appropriate
member in the My table and it returns a SCATTER
NAME object from that record.

Main calls DisplayMembers, shown in Listing 4,
to tell IntelliSense to display a list of registered My
members when you type a period in the command
line. DisplayMembers calls GetMembers to retrieve
a collection of members for the specifi ed member.
It then fi lls the Items array of the FoxCode object
with the names and descriptions of the members
and sets the object’s ValueType property to “L,”
which tells IntelliSense to display a list box with
the contents of the Items array. This code shows
one slight design fl aw in IntelliSense: the FoxCode
object has a single Icon property which contains

* Builds a list of members for IntelliSense to display.

lparameters toFoxCode, ;
 toData
local loMembers, ;
 lcPath, ;
 lnI, ;
 loMember
with toFoxCode

* Get a collection of members for the current class.

 loMembers = This.GetMembers(alltrim(toData.Member))
 if loMembers.Count > 0

* Add each member to the Items array of the FoxCode object.

 dimension .Items[loMembers.Count, 2]
 lcPath = iif(fi le('propty.bmp'), '', home() + 'FFC\Graphics\')

 for lnI = 1 to loMembers.Count
 loMember = loMembers.Item(lnI)
 .Items[lnI, 1] = loMember.Name
 .Items[lnI, 2] = loMember.Description
 if loMember.Type = 'P'
 .Icon = lcPath + 'propty.bmp'
 else
 .Icon = lcPath + 'method.bmp'
 endif loMember.Type = 'P'
 next loMember

* Set the FoxCode object's ValueType property to "L", meaning
* display a list box containing the items defi ned in the Items
* array.

 .ValueType = 'L'
 endif loMembers.Count > 0
endwith

Listing 4: DisplayMembers fills the Items array of the FoxCode object so IntelliSense displays the desired members of a My class

* Add all member objects registered in the My table.

local lnSelect, ;
 lcNameSpace, ;
 lnLen, ;
 lcCursor, ;
 lcMember, ;
 lcLibrary

* Create a cursor of all objects in this namespace.

lnSelect = select()
lcNameSpace = upper(This.cNameSpace) + '.'
lnLen = len(lcNameSpace) + 1
lcCursor = sys(2015)
select * from __MY where upper(MEMBER) = lcNameSpace and ;

 not empty(CLASS) and not deleted() into cursor (lcCursor)

* Go through the members, adding any that are directly within this
* namespace (for example, if this is "My", add "My.Computers"
* but not "My.Computers.Audio").

scan
 lcMember = alltrim(substr(MEMBER, lnLen))
 lcLibrary = fullpath(alltrim(LIBRARY), This.ClassLibrary)
 if at('.', lcMember) = 0 and fi le(lcLibrary)
 This.NewObject(lcMember, alltrim(CLASS), lcLibrary)
 endif at('.', lcMember) = 0 ...
endscan
use
select (lnSelect)

Listing 5: AddMembers dynamically instantiates all registered members of the current namespace

Favorites for
IntelliSense
The Technical Papers page of
my Web site has an article and
source code for Favorites for
IntelliSense (FFI). FFI is a more
generalized version of My,
providing the ability to control
exactly what IntelliSense displays
for any class.

The My Namespace in Sedna

35www.code-magazine.com

the name of the image fi le to display in the list box.
You actually need an additional column in the
Items array, since in this case, you want to display
different images for properties and methods. Un-
fortunately, you get only a single image displayed
for all items.

Run-time Class Hierarchy

IntelliSense is one thing; it’s another to actually
have the My namespace work when you run the
code. Although it would be simple to have a class
called My with members named App, Computer,
Data, and so forth, My is actually more extensible
than that; like IntelliSense, it’s data-driven (in fact,
using the same My table).

The My class is actually a subclass of MyBase, as
is the Computer, User, and other classes. MyBase,
a subclass of Custom, dynamically adds members
to itself based on what it fi nds in the My table. Ad-
dMembers, called from Init, does the work.

Listing 5 shows the code for AddMembers. This
method selects records from the My table matching
the namespace specifi ed in the custom cNameSpace
property, which contains the namespace of this
object (for example, “My” for the My class and
“My.Computer” for the Computer class). It then
instantiates the classes specifi ed in those records
and adds them as members. For example, for the
My namespace, the My table has records for mem-
bers named My.App, My.Computer, My.Data, and
My.User. Thus, instantiating the My class, which
is based on MyBase, dynamically creates all of
the members registered in the My table. My actu-
ally has no code; it simply has cNameSpace set to
“My.”

Computer, the class representing the My.Computer
member, is also a subclass of MyBase. So, when
the AddMembers method of My instantiates it,
its AddMembers method goes through the My
table, looking for members of the My.Computer
namespace, such as My.Computer.Audio,
My.Computer.FileSystem, and so on. Those classes
are also based on MyBase, so simply instantiating
one class (My) builds a hierarchy as deep as nec-
essary. For example, My has four levels of classes
for the My.Computer.FileSystem.SpecialFolders
namespace.

Since there’s one record
in the My table for every class,

property, and method,
it would be tedious to fill out this
table by hand. Fortunately, there’s

an easier way: with a builder.

The My Namespace in Sedna

Data-Driven Design

Figure 3 shows the structure of the My table. The
MEMBER fi eld contains the name of the member
the record is for, with a fully qualifi ed namespace.
The TYPE column indicates what type of record

this is: “C” for class, “M” for method, and “P” for
property. DESCRIP contains a description for the
member displayed as a tooltip in the IntelliSense
member list. TIP contains the tooltip for a method
displayed when you type the opening parenthesis;

36 www.code-magazine.com

IntelliSense displays
this tooltip as the sig-
nature of the method.
LIST contains a list
of enumerated values
displayed for the pa-
rameter of a method;
this listing capabil-
ity was discussed
earlier. CLASS and
LIBRARY contain

the class and class library for the class to
instantiate for “C” records.

Since there’s one record for every class,
property, and method, it would be tedious
to fi ll out this table by hand. Fortunately,
there’s an easier way: using a builder. My-
Base has a custom Builder property contain-
ing “My.VCX,MyBuilderForm.” This tells
VFP to use MyBuilderForm in My.VCX as
the builder for this class and any class based
on it. You can register a subclass of My and
its members in the My table by right-click-
ing the class and choosing Builder. Figure 4
shows what the builder form looks like.

The My Registration Builder allows you to
specify the namespace for the class. It de-
faults to “My.” plus the name of the class,
but you can specify something else if you
wish. For example, the FileSystem class is a
member of My.Computer, so its namespace

is My.Computer.FileSystem. IntelliSense displays
the description as the tooltip for the class in the
type list. The description defaults to the class de-
scription as specifi ed in the Class Info function in
the Class menu or by choosing the Edit Descrip-
tion function in the Project menu when you select
the class in the Project Manager.

The TreeView shows public custom properties and
methods for the class; if you want native members
displayed as well, change the AMEMBERS() state-
ment in the LoadTree method of the MyBuilder-
Form class in My.VCX. The check box before the
name indicates whether IntelliSense displays the

member or not; by default, all
custom members are included.
IntelliSense displays the de-
scription as the tooltip for the
member in the member list; it
defaults to the description you
entered for the member when
you created it. IntelliSense dis-
plays the method signature as
a tooltip for a method when
you type an open parenthesis
or a comma in the parameter
list for the method; this tooltip

shows you what parameters you can pass to the
method. The signature defaults to the method
name and the contents of any LPARAMETERS
statement in the method, but you can edit it to dis-
play anything you wish, including the data type of
the return value. The Enumerated Parameters edit

box allows you to see the list of enumerated values
for the method’s parameter.

Extending My

What if you want to add your own namespaces
to My? You could do that by subclassing MyBase
to create new classes with the desired functional-
ity, but what if you already have a class you want
to use that isn’t based on MyBase? No problem:
open the class and DO FORM MyBuilderForm.
This form is an instance of the MyBuilderForm
class and can register any class in the My table. Of
course, since classes that aren’t based on MyBase
won’t dynamically add members to themselves,
these classes won’t have a dynamic hierarchy be-
low them nor will you get IntelliSense on members
that are objects.

To see this in action, open the ConnectionMgr
sample class in ConnMgr.VCX, and then DO
FORM MyBuilderForm. Make the desired chang-
es, and then choose OK. Close the class. In a
PRG window, type LOCAL My as My followed by
My.ConnectionMgr. You see IntelliSense on the
members you specifi ed.

Summary

My is an exciting new feature in Sedna. It provides
easy access to many Windows API functions and
Windows Script Host properties and methods,
making them both discoverable and easy to use.
Like IntelliSense, My is data-driven, so it’s exten-
sible, allowing you to add your own classes to the
My namespace so they’re more discoverable and
you have more control over what IntelliSense dis-
plays for them. Be sure to check out My and see
how it can help your application development ef-
forts.

What if you want to
add your own namespaces to My?

No problem:
open the class and DO FORM

MyBuilderForm.

Figure 4: The My Registration Builder makes
short work of registering a class in the My
table.

Doug Hennig

Figure 3: The My table allows My to be data-driven.

The My Namespace in Sedna

38 www.code-magazine.com

Beginning with the End in Mind

I have the same goal in writing this article that I have
in my Baker’s Dozen articles in CoDe Magazine: I’ll
write a set of how-to tips that I would love to have
read when I set out to learn a
new technology or feature. I
started developing software
in 1987 and can honestly say
that the transition from VFP to
.NET was the most challenging
(and also rewarding) endeavor
of my career.

In this article, I’ll cover the following:

• Understanding .NET projects, solutions, and
assemblies, and a quick language primer

• A quick tour through the common .NET
Framework classes

• How to use refl ection in place of the VFP macro
• Building a .NET data access class
• .NET Generics and anonymous methods in C#
• Some powerful features in ASP.NET 2.0 and

AJAX
• The Baker’s Dozen Spotlight: building a re-

usable data maintenance form class (this cov-
ers the next four tips)

• Subclassing Windows Forms controls and im-
plementing reusable data binding

• Building a data maintenance criteria container
(UserControl)

• Building a data maintenance results container
(UserControl)

• Building a data maintenance entry/edit con-
tainer (UserControl)

• Working with data in DataSets using ADO.
NET

At the end of this article, I’ll include a list of books,
articles, and other resources that I recommend for
further research.

Watching My Language

I wrote the example code in
this article in C#. I prefer C#
because I previously wrote C
and C++. In most instances,
developers can take the code in
this article and port it to Visual
Basic. However, Tip 5 contains

code that uses anonymous methods, a new C# lan-
guage feature with that doesn’t have a Visual Basic
equivalent though it will be available in the next
version. For that situation I’ll provide a workaround
that works today.

Less Talk, More Code

I set a goal for this article to be short on talk and
long on code. When I began the .NET learning
curve, I got the most value out of books and articles
that contained meaningful code samples. So for
each tip, as much as possible, I’ll minimize the yak-
king and focus on the hacking. (There was a time
when hacker meant something complimentary!)

Tip 1: Understanding .NET Solutions,
Projects, Assemblies, and References

Let’s start by looking at the solution and proj-
ect structure in Visual Studio 2005 for an actual

The Baker’s Dozen:
13 Productivity Tips for
Moving from VFP to .NET
When Visual FoxPro developers take the plunge to learn .NET,
the most common reaction is, “I could do such-and-such, this-
and-that in VFP—how can I do it in .NET?” This special edition
of The Baker’s Dozen will offer solutions for many of the typical
challenges that VFP developers face when tackling .NET. I’ll start by
covering .NET solution and project structures and an overview of the .NET Framework,
and I’ll spend time showing how to use .NET reflection to do some of the things that
VFP developers could accomplish with macro-expansion. Then I’ll cover different
.NET features such as Generics, ASP.NET 2.0, and I’ll show how to create a reusable
data access component. Finally, I’ll build the architecture for a set of reusable data
maintenance classes in .NET.

This article contains a number
of .NET/C# code samples to

show VFP developers how to do
common tasks in .NET.

Fast Facts

Kevin S. Goff
Kgoff@
commongroundsolutions.net

Kevin S. Goff, a Microsoft MVP
award recipient for 2007,
is the founder and principal
consultant of Common Ground
Solutions, a consulting group
that provides custom Web and
desktop software solutions in
.NET, VFP, SQL Server, and
Crystal Reports. Kevin is the
author of Pro VS 2005 Reporting
using SQL Server and Crystal
Reports, published by Apress.
Kevin has been building software
applications since 1988. He has
received several awards from the
U.S. Department of Agriculture
for systems automation. He has
also received special citations
from Fortune 500 companies for
solutions that yielded six-figure
returns on investment. He has
worked in such industries as
insurance, accounting, public
health, real estate, publishing,
advertising, manufacturing,
finance, consumer packaged
goods, and trade promotion.
In addition, Kevin provides
many forms of custom training.
Contact Kevin at kgoff@
commongroundsolutions.net

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
0

9
2

The Baker’s Dozen: 13 Productivity Tips for Moving from VFP to .NET

39www.code-magazine.com

.NET application. Figure 1 shows the complete
solution for a demo .NET database application.
A .NET solution is a collection of .NET projects.
The .NET solution in Figure 1 consists of the fol-
lowing:

• Two solution folders, one for a framework of
reusable classes (Common Ground Frame-
work), and one for an actual demo application
(Construction Demo).

• Subfolders to further categorize projects with-
in a main folder.

• Under each solution you’ll see a series of
.NET projects. Each project contains one or
more related class fi les that compile to a single
separate DLL. For instance, the project CGS.
DataAccess contains a class fi le for basic data
access functionality. The project compiles to
CGS.DataAccess.DLL and can be used from
other .NET projects.

• In addition, the project ConstructionDemo.
Client.Winforms (in the folder structure Con-
struction Demo…Client…Winforms) appears
in bold, because I’ve defi ned it as the startup
project. When I build this project, Visual Stu-
dio 2005 will create an executable fi le.

Many classes will refer to functions in base libraries,
and will also inherit from previous classes in other
.NET projects. In these situations, it is necessary
to set add a reference to parent libraries. You can
right-click on a project and select Add Reference
from the short-cut menu (Figure 2).

Figure 1: Solution structure. Figure 2: Solution project options.

The Baker’s Dozen: 13 Productivity Tips for Moving from VFP to .NET

Read this entire article online at

http://www.code-magazine.com/focus/vfp/

40 www.code-magazine.com

VSTS is comprised of client applications and
a Team Foundation Server (TFS). The client
applications are available in several fl avors of

Visual Studio 2005 targeting
a variety of roles including
developers, testers, architects,
and most recently, database
administrators. You can in-
stall the client application for
accessing the TFS, Team Ex-
plorer, in an existing Visual
Studio 2005 installation or
as a stand-alone application.
Team Explorer provides the
user interface for all of the
TFS features; when installed
on top of Visual Studio, Team
Explorer is tightly integrated
into the Visual Studio IDE.

TFS is composed of a logical
application tier and a logical
data tier. The logical applica-
tion tier exposes a Web service
API to the Team Explorer cli-
ent and any other client that
writes to the API. The logical data tier leverages
SQL Server 2005 for storage as well as SQL Server
Reporting Services and SQL Analysis Service for
reporting. Additionally, TFS provides an intranet
portal built on Windows SharePoint Services, which
provides a fi le repository and a collaboration tool.

Software Development the Team
System Way

While VSTS can support any development pro-
cess, the out-of-the-box feature set supports a

development life-cycle as shown in Figure 1. The
process starts with the creation of a work item.

The work item, a Scenario in
this example, represents some
capability the users would
like the software to support.
Once the Scenario is assigned
to a developer for implemen-
tation, they write the code
and one or more unit tests.
You may write the tests fi rst if
you’re using Test Driven De-
velopment.

Once all of the unit tests pass
and the developer determines
the code is ready for further
testing, they check the code
into TFS version control.

A build is initiated as a result
of the check-in event (Con-
tinuous Integration), a sched-
uled event (Daily Build), or
a user action. The build re-

trieves all of the source code from the version con-
trol repository, builds each executable, and places
the executables in a drop folder, typically on a net-
work share.

In addition to building the binaries, the build pro-
cess can also run build verifi cation tests, which en-
sure that the individual units still function properly
when integrated. If a project fails to build or if any
build verifi cation test fails, the process stops and
TFS creates a bug work item. You could then as-
sign this bug to a developer to correct. Once the
developer fi xes the problem and checks in the
changes, you can attempt the build again.

Integrating VFP into VSTS
Team Projects
Whenever more than one person works on a software
development project, introducing some process to coordinate
the activities of the team members is a priority. The larger the team,
the harder it is to manage. To meet this need, Microsoft created Visual Studio Team
System (VSTS). VSTS is a state-of-the-art Software Development Life Cycle tool
suite that is tightly integrated into Microsoft Visual Studio 2005. VSTS provides
deep support for .NET projects; however, whenever a software solution includes
components developed on a platform other than .NET, such as Microsoft Visual
FoxPro (VFP), VSTS loses some of its value because the projects aren’t integrated
into VSTS. Leveraging the extensibility features of VSTS and VFP, this article will
help you integrate VFP projects into VSTS team projects enabling your team to apply
a comprehensive process to your entire software development effort.

VSTS is used by the Developer
Division at Microsoft in developing
Visual Studio. This is referred to as
dogfooding. As in, “we eat our own

dog food.” Here are a few of the
statistics for November 2006:

Recent users: 944 (up 72)
Work items: 142,693 (up 11,000)
Files: 67,665,148 (up 5.5M)
Folders: 13,857,564 (up 1.4M)
Local Version: 279M (up 35M)
Check-ins: 141,739 (up 8,000)
Pending changes: 993,915 (up 9,000)

Source: http://shrinkster.com/kd

Fast Facts

John M. Miller
jmiller@pdata.com
(949) 454-1400

John is the Chief Software
Architect for Protocol Direct
Marketing. He builds systems
using both VFP and .NET
technologies. John has presented
sessions on VSTS for numerous
developer groups and has spoken
at the Microsoft Professional
Developer Conference.

John wrote articles for both
FoxTalk and FoxPro Advisor and
wrote one of the original Pros
Talk Fox books for Pinnacle
Publishing, Inc, Template
Programming in FoxPro 2.0.

O
N

LI
N

E
Q

U
IC

K
0

 I
D

 0
7

0
3

1
0

2

Integrating VFP into VSTS Team Projects

41www.code-magazine.com

When the build completes successfully and all build
verifi cation tests pass, the executables in the drop
folder can undergo system testing and user accep-
tance testing. When these tests pass, the product is
ready for wider release.

As indicated in Figure 1, TFS supports the develop-
ment life cycle by providing the following:

• Work item tracking
• A testing framework that supports unit test-

ing, build verifi cation testing, load testing, and
manual testing

• A version-control repository
• A build service that supports automated build

testing

VFP Integration Challenges

Whenever a software development effort involves
multiple development environments it complicates
the software development life cycle. Integrating
VFP with VSTS presents a number of signifi cant
challenges.

Work Items

Visual FoxPro’s Task List provides a local reposi-
tory of tasks and provides limited extensibility. VFP
is not designed to support a shared task list so tasks
can be managed by others. VFP also doesn’t sup-
port workfl ow to guide tasks through to completion
in compliance with team policies.

Work items are the lifeblood of the TFS software
development process. You use work items to record
what needs to be done, who needs to do the work,
and to provide an immutable history of what has
been accomplished.

Developers who spend most of their day work-
ing in the VFP IDE need convenient access to the
work item repository—not only to see and update
their assigned work items, but also to create new
work items for themselves and others. While Team
Explorer provides such access, the context switch
of leaving the development environment to edit
work items puts VFP developers at a disadvan-
tage.

Automated Testing

Development teams increasingly use automated
unit testing and automated build verifi cation test-
ing to both increase the quality of software and to
allow software to be easily refactored. It is essen-
tial that VFP developers have the ability to create
unit tests and build verifi cation tests for VFP ap-
plications and to automate the execution of these
tests if we are to be fi rst-class members of a multi-
disciplinary team.

Version Control

In addition to the ability to simply store VFP source
code, you need to be able to take advantage of the
advanced features of the TFS version-control re-
pository.

For example, it is possible to establish a
check-in policy that requires a work item
be associated with every check in. This
provides a means for identifying all code
changes necessitated by a specifi c work
item and provides a way of justifying each
code modifi cation. VFP developers need
to be able to conform to the policies of
their team without being forced to leave
the development environment.

Other version-control fea-
tures are equally impor-
tant, including shelving,
branching, and merging.
The challenge is to make
these features easily avail-
able to VFP developers.

Build Automation

Automating the
build process is
another technique
used to increase
the quality of soft-
ware. By having
a consistent build
process, a team
ensures that they
can compile and assemble all the
required components and that
the executables pass verifi cation
testing. Establishing a minimum
baseline of quality before further
testing begins allows teams to
fi nd and fi x problems sooner—saving both time and
money. The challenge is to automate the building
of VFP executables and automate the execution of
VFP tests.

Whenever a software
development effort involves
more than one development

environment,
it significantly complicates
the software development

lifecycle.

Figure 1: Common
development life
cycle supported by
VSTS.

Integrating VFP into VSTS Team Projects

Read this entire article online at

http://www.code-magazine.com/focus/vfp/

42 www.code-magazine.com

The .NET and COM platforms are not designed to
communicate directly with one another and Mi-
crosoft knew it needed to provide a way for de-

velopers to bridge the gap. Microsoft came up with a
way to wrap the respective com-
ponents in two special wrappers
known as the Runtime Callable
Wrapper (RCW) and the COM
Callable Wrapper (CCW). The
RCW and CCW act as proxies
to facilitate communication be-
tween COM and .NET.

RCW

In .NET, developers use RCW, also known as an in-
terop assembly, to communicate with COM compo-
nents. A developer can create an RCW for a COM
component by either using the Add Reference fea-
ture in Visual Studio 2005 or by using tlbimp.exe.
To create the RCW for a COM component through
the Add Reference feature, a developer performs
the following steps:

1. Right-click the project in the Solution Explor-
er and select the Add Reference item from the
context menu.

2. Select the COM tab in the Add Reference dia-
log box.

3. Select the desired COM component from the
list provided.

4. Click OK (Figure 1).

Visual Studio will then create an RCW for the se-
lected COM component and save it into the proj-
ect’s bin directory. As noted above, there is another
way to accomplish this. To use the tlbimp.exe to cre-
ate the RCW for a COM component, a developer
performs the following steps (Figure 2):

1. Open the Visual Studio 2005 Command
Prompt and use the CD command to navigate
to the directory that contains the COM com-
ponent.

2. Type “tlbimp MyCOMServer.dll /out:MyIn-
teropAssembly.dll” at the Command Prompt,
where MyComServer is the name of your DLL
and MyInteropAssembly is the name of the
corresponding .NET assembly that you want
tlbimp to create.

Using the above steps will cause the tlbimp com-
mand-line tool to generate the RCW (MyInteropAs-
sembly.dll), which you can then add to a .NET proj-
ect by using the Add Reference dialog box.

An instance of the System.
Runtime.InteropServices.Ty-
peLibConverter class generates
the interop assembly (RCW) re-
gardless of which of the above
methods you use. After the in-
stance of the System.Runtime.
InteropServices.TypeLibConver-
ter creates the interop assem-

bly and you’ve added the interop assembly to the
project, you can then add a reference to the interop
assembly’s namespace in code, utilizing the Imports
keyword in Visual Basic or the using keyword in C#,
and then reference the classes in the RCW directly.
You’re not required to reference the namespace. You
could choose to fully qualify the class instead. Just
use the RCW in a .NET project just like any other
assembly and access the COM component’s public
OLE classes in a straightforward and natural way.

CCW

The CCW provides for the reverse scenario than that
presented for the RCW. The CCW provides access
to .NET components from a COM client, such as a
Visual FoxPro application. The way that developers
create a .NET component to provide the CCW is a
little more complex than creating an RCW, but most
developers will fi nd the following steps straightfor-
ward and doable.

When creating a CCW from Visual Studio 2005,
developers create and build the .NET classes and
the resultant assembly in the usual way for the most
part. Basically, the only additional things a devel-
oper needs to do to expose public .NET classes in
an assembly is to perform the following steps before
building the project:

1. Add a reference to the System.Runtime.In-
teropServices namespace in the class fi le.

2. Make the assembly COM-visible.
3. Register the assembly for COM interop when

it is built.
4. Sign the assembly.

COM Interop Over Easy
This article highlights some of the new toolkits and components
coming out of Redmond for COM Interop. The Interop Forms Toolkit, the
Interop UserControl Prototype, and the techniques used in Sedna’s NET4COM allow
Visual FoxPro developers to incorporate .NET components into their applications.

Developers using COM-aware
languages, such as Visual FoxPro,
can easily build and incorporate
powerful .NET components into

their applications.

Fast Facts

Craig Boyd
craig@sweetpotatosoftware.
com
651.982.0777

Craig Boyd is the CEO of Sweet
Potato Software, Inc. (SPS) and
a Microsoft Visual FoxPro MVP.
Craig has years of experience
developing applications for US
and international clients. He
specializes in helping other
software companies meet
challenging deadlines, solve
complex problems, and upgrade
project interfaces. Craig has built
a solid reputation for getting jobs
done on time and within budget.
When he’s not working on client
projects, writing blog entries, or
helping members of the Visual
FoxPro Community out on the
forums, he writes magazine
articles for technical publications.

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
1

1
2

COM Interop Over Easy

43www.code-magazine.com

Developers can add a reference to the namespace
by including either “Imports System.Runtime.In-
teropServices” in Visual Basic or “using System.
Runtime.InteropServices;” in C#.

To make the assembly COM-visible in Visual Stu-
dio, select the “Make assembly COM-Visible” check
box in the Assembly Information dialog box (Proj-
ect Properties screen > Application page > Assem-
bly Information button > Make assembly COM-Vis-
ible check box) as shown in Figure 3.

Register the assembly in Visual Studio by selecting
the “Register for COM interop” check box (Project
Properties screen > Compile page) (Figure 4).

Finally, you’ll sign the assembly with a strong name
key fi le. This is done so that the developer can in-
stall the assembly into the Global Assembly Cache
(GAC), which requires that assemblies be signed.
Also, developers can avoid a number of ominous
warning messages when they register the assembly
into a location other than the GAC using the /code-
base switch. More on registering the assembly in a
moment; for now, let’s take a look at the two ways
to produce the strong name key fi le that a developer
needs to sign the assembly.

Creating a Strong Name Key File

You can create a strong name key fi le using the
Strong Name tool (sn.exe). Follow these steps (Fig-
ure 5):

1. Open the Visual Studio 2005 Command
Prompt.

2. Type “sn –k myproject.snk” at the Command
Prompt, where myproject is the name you’ve
given your Visual Studio project.

Using a COM-visible
assembly from Visual FoxPro is no

different than using any other
COM component.

This is the magic of the CCW.

Figure 1: By adding a reference to a COM component, Visual
Studio will generate the RCW needed to use the classes
the COM component contains. Visual Studio reads the type
definitions in the COM type library and converts them into their
.NET equivalents. It then builds the .NET equivalents into an
assembly that can be used natively in code.

Figure 2: You can use Tlbimp.exe, a command-line tool, to generate an assembly that contains the
.NET equivalent of the type definitions found in a COM type library. You can then reference and use the
assembly generated in a .NET project in lieu of the COM server.

Figure 3: Select the “Make assembly COM-Visible” check
box tells Visual Studio that it should export all public classes,
properties, events, and methods when it builds the project.
Visual Studio will automatically generate the GUIDs needed for
the class and interfaces it exports.

Figure 4: Use the “Register for COM interop” check box to tell Visual Studio whether to register the
assembly on the developer’s machine once it is built. Among other things, Visual Studio will create
PROGID and CLSID entries in the registry for the COM-visible types in the assembly.

COM Interop Over Easy

Read this entire article online at

http://www.code-magazine.com/focus/vfp/

44 www.code-magazine.com

The Sedna release of the Data Explorer adds new
features and corrects some recognized bugs.
Each of the enhancements and improvements

came from suggestions made by the Fox Commu-
nity, problems submitted to Microsoft, and at least
one bug fi x came directly from code blogged with
the correction.

The changes discussed in this
article are based on the version
shipped in the Sedna October
2006 Community Tech Pre-
view (CTP) and some additions
made just after the CTP release.
You can download the Sedna
components from Microsoft’s
Visual FoxPro Web site (http://
msdn.microsoft.com/vfoxpro/). It
is important to note that at the
time this article was written,
Microsoft has not fi nalized the
features to be included in the
gold release.

Data Explorer Main
Form

One change you immediately notice is the buttons
on the top of the main form seen side-by-side in
Figure 1 with the newer version on the right. The
toolbar buttons of the Data Explorer now mimic
the functionality as well as the look and feel of the
Server Explorer inside of Visual Studio .NET. You
can use the new Refresh button to update the con-
tents of the tree view. This feature is available us-
ing the Data Explorer shortcut menu even in the
original version. In addition, you’ll use the Refresh
button when you make changes to the schemas in
a database, or you have multiple copies of the Data
Explorer open and make changes to the connec-
tions in another instance and you want to update
the current instance of the Data Explorer. You can
optionally include the icons and make the toolbar
buttons hot tracking. These two settings are avail-
able on the Options dialog box and discussed later
in this article.

Microsoft enhanced the main form so the treeview
nodes no long collapse when you return to the Data

Explorer window from the Options dialog box.
This saves time when you make code changes to
the various extensions like the shortcut menu, drag
and drop functionality, or the query add-ins. You
now jump directly to the node you are using to test
the changes instead of having to drill down every

time you return to the Data Ex-
plorer.

The original version of the Data
Explorer allows you to sort ob-
jects for each connection. Turn-
ing on this setting will sort all
the tables, views, and stored
procedures by name. Unfortu-
nately, this setting also sorts the
column names by name. Most
developers want the tables,
views, and stored procedures
sorted, but prefer the column
names in natural column or-
der. The Sedna Data Explorer
allows you to choose how you
want the column names or-
dered for VFP and SQL Server

connections separate from the object sorting setting.
This is one of my favorite enhancements. Microsoft
enhanced the property dialog boxes for these con-
nections (Figure 2) so you can make your prefer-
ences more granularly than the original version of
the Data Explorer.

Shortcut Menu

You’ll fi nd most of the Data Explorer functionality
on the shortcut menu for the treeview. Sedna has
several new features that don’t automatically show

The New and
Improved Data Explorer
The Data Explorer introduced in VFP 9.0 allows developers to
work with different types of data from diverse data sources
independent of specific projects. The Sedna update extends this already
powerful and productive tool.

The Sedna Data Explorer
provides numerous

enhancements and essential bug
fixes to a tool introduced in VFP

9.0. This article highlights the
new changes made to the Data
Explorer so developers can be
more productive managing and

querying VFP,
SQL Server, Oracle, and any
other data source you can
connect to using OLE DB

through ADO.

Fast Facts

Rick Schummer
raschummer@
whitelightcomputing.com

Rick Schummer is the president
and lead geek at White Light
Computing, Inc. headquartered
in southeast Michigan, USA.
He prides himself in guiding
his customer’s information
technology investment toward
success. He is a co-author of
Visual FoxPro Best Practices for
the Next Ten Years, What’s New
in Nine: Visual FoxPro’s Latest
Hits, Deploying Visual FoxPro
Solutions, MegaFox: 1002 Things
You Wanted To Know About
Extending Visual FoxPro, and
1001 Things You Always Wanted
to Know About Visual FoxPro.
He is regular presenter at user
groups in North America and has
enjoyed presenting at GLGDW,
Essential Fox, VFE DevCon,
Southwest Fox, German DevCon,
and Advisor DevCon conferences.
You can find all of his developer
tools at his company Web site:
http://whitelightcomputing.com

O
N

LI
N

E
Q

U
IC

K
 I

D
 0

7
0

3
1

2
2

The New and Improved Data Explorer

The main form has been
enhanced so the tree view nodes
no long collapse when you return

to the Data Explorer
window from the Options

dialog box.

45www.code-magazine.com

up on the menu if you’ve previously used the Data
Explorer because the functionality for the shortcut
menu is stored in the metadata: DataExplorer.DBF
in the HOME(7) folder. The new functionality is
stored inside the DataExplorer.APP fi le internally
in a DBF fi le. If you want the new menu function-
ality and want to retain your existing connections
and extensions you have added or downloaded you
need to use the Options dialog box to update your
DataExplorer.DBF metadata.

From the Data Explorer toolbar click Options and
then fi nd the button called Restore to Default. You
might hesitate thinking that this option might set
your Data Explorer back to the factory settings, and
indeed this is possible, but you can also retain the
connection settings and the extensions you have
added to the menu, to the Run Query dialog box,
and the drag and drop functionality. Click Restore
to Default to start the update process. You’ll see this
message: “Do you want to maintain connections and
customizations that were done by you or a third-
party vendor?” Click yes if you want to save your
changes and get the new enhancements. Click no if
you really want to reset your installation to factory
settings including the new functionality distributed
by Microsoft in the Sedna release. Note that if you
made any enhancements to the code included in
the original Data Explorer features, it is possible the
Data Explorer will reset it. See the sidebar, Update
Shortcut Menu Can Overwrite Your Code Changes,
for more details and recommendations.

SQL ShowPlan

Another feature that Sedna adds to the shortcut
menu will display the SQL ShowPlan (Figure 3) for
local views. Besides the actual ShowPlan details,
the results include:

• The ShowPlan level passed to the SYS(3054)
function

• SQL-SELECT code stored in the local view
• How long the query ran in seconds
• Number of records returned from the query
• View parameter(s) and their data types
• Optional messages to indicate how slow

the query ran based on your threshold prefer-
ences

• Date and time the analysis was completed

One aspect of the ShowPlan output you can cus-
tomize in the code is the threshold of when a view is
considered moderately slow, just plain slow, super
slow, or critically slow. Each of these thresholds can
differ between developers. You can change these
#DEFINEs to meet different localization require-
ments.

Figure 1: One of the enhancements to the Sedna version of the Data Explorer (shown on the right side)
is to the toolbar at the top of the main form. One of the bugs fixed is the default values (highlighted in the
description pane) now show the setting correctly for VFP tables.

Figure 2: You can now sort objects without sorting column
names because Sedna splits out the two options for VFP and
SQL connections.

Figure 3: One of the new shortcut menu items for local views is to display
the SQL ShowPlan to analyze the Rushmore optimization for the query.
The results are displayed in the FoxPro text editor.

The New and Improved Data Explorer

46 www.code-magazine.com

#DEFINE cnCRITICALSLOW 60.0
#DEFINE cnSUPERSLOW 20.0
#DEFINE cnSLOW 10.0
#DEFINE cnMODERATESLOW 4.0
#DEFINE ccCRITICALCAPTION "Critical Slow"
#DEFINE ccSUPERSLOWCAPTION "Super Slow"
#DEFINE ccSLOWCAPTION "Slow"
#DEFINE ccMODERATESLOWCAPTION "Moderate Slow"

Visual FoxPro determines the ShowPlan for a view
when it opens or requeries a view. One of the tricky
parts of writing generic code to open a view is to
deal with the possibility of view parameters. The
script code for this feature looks at the view param-
eter list for the view and places empty values based
on the data type of the view parameter if this is set.
If you haven’t added the view parameters to the
parameter list in the View Designer, in your view
script code (if you are avoiding the View Designer),
or by your favorite view editor, VFP will prompt
you to enter in the value when the view is opened.
This will artifi cially slow down the performance of
the view, but will not affect the ShowPlan details.

Database Documenter

The Fox Team also added the Database Documenter
for VFP databases to the shortcut menu. The version
released with the October CTP creates text-based
documentation displayed in a VFP text editor. The
Fox Team greatly enhanced the latest version of the
Database Documenter to include more database
details as well as presenting it in HTML format

(Figure 4) using a cascad-
ing style sheet (CSS) you
can control. The resulting
HTML is displayed in your
default Web browser and
has a table of content links
at the beginning so you can
go directly to the different
sections for tables, views,
connections, relations, and
some other status details.

The CSS code is stored in
the menu option’s Tem-
plate code. Listing 1 shows
an example of the cascad-
ing style.

If you want to know what
styles affect what parts of
the HTML, just review the
script code for the new
menu option. If you prefer
the simpler text version of
the output, all you have to
do is modify one line of
code in the script. Change
the following line of code:

llHTML = .T.

Set the llHTML variable to false and the output will
be unformatted text.

Call the New Upsizing Wizard

Microsoft completely revamped and improved the
SQL Server Upsizing Wizard. Another article in
this issue covers the new and improved features.
However, one new feature of the Data Explorer
demonstrates how to programmatically call the
Upsizing Wizard. One of the Upsizing Wizard
APIs allows you to pass it the database container
and the name of the SQL Server database you pre-
fer as the default name. The wizard will start with
the settings made for the fi rst and third steps al-
ready completed.

The script code (Listing 2) shows you how you can
determine the name of the database container to
pass to the wizard. You can edit this code using the
Manage Menus button on the Data Explorer Op-
tions dialog box.

The only “magic” involved in the script is to deter-
mine where the Upsizing Wizard is located. You
set the location of the wizard on the enhanced
Options dialog box. A property of the Data Ex-
plorer Engine object called UpsizingWizardLo-
cation stores the location. The fl exibility here is
important in case you want to run a customized
Upsizing Wizard that meets your project needs,
or even if you want to replace the Microsoft ver-
sion with your own or one from a third-party pro-
vider.

C
O

D
E

C
O

M
P

IL
ER

S

Feb 2007 Volume 4 Issue 1

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Managing Editor
Ellen Whitney

Content Editors
H. Kevin Fansler
Erik Ruthruff

Writers In This Issue
Craig Boyd Cesar Chalom
Bo Durban Markus Egger
Kevin S. Goff Malcom Greene
Y. Alan Griver Doug Hennig
John M. Miller Emmerson Reed
Rick Schummer Rick Strahl
Arto Toikka Mike Yeager

Technical Reviewers
Alan Griver Ellen Whitney

Art & Layout
King Laurin GmbH
info@raffeiner.bz.it

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/ Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Vice President, Sales and Marketing
Tom Buckley
832-717-4445 ext 34
tbuckley@code-magazine.com

Sales Managers
Erna Egger
+43 (664) 151 0861
erna@code-magazine.com
Tammy Ferguson
832-717-4445 ext 26
tammy@code-magazine.com

Circulation & Distribution
General Circulation:
EPS Software Corp.
Newsstand:
Ingram Periodicals, Inc.
Media Solutions
Worldwide Media

Subscriptions
Circulation Manager
Cleo Gaither
832-717-4445 ext 10
subscriptions@code-magazine.com

US subscriptions are US $29.99
for one year. Subscriptions outside
the US are US $44.99. Payments
should be made in US dollars drawn
on a US bank. American Express,
MasterCard, Visa, and Discover credit
cards accepted. Bill me option is
available only for US subscriptions.
Back issues are available.
For subscription information, email
subscriptions@code-magazine.com
or contact customer service
at 832-717-4445 ext 10.

Subscribe online at
www.code-magazine.com

CoDe Component Developer
Magazine
EPS Software
Corporation / Publishing Division
6605 Cypresswood Drive, Ste 300,
Spring, Texas 77379
Phone: 832-717-4445
Fax: 832-717-4460

The New and Improved Data Explorer

Figure 4: The Database Documenter creates HTML output enhanced with a cascading style
sheet (CSS) so you can control the look and feel of the results.

47www.code-magazine.com

Bug Fixes

One of the bug fi xes I really wanted fi xed is to dis-
play the default values for VFP tables in the Data
Explorer. Figure 1 shows the correct schema infor-
mation for VFP tables in the description pane at
the bottom of the Data Explorer. You can see in the
original version the default value was completely
wrong—often blank or as a logical false (.F.)—even
for non-logical fi elds in the table. The Sedna version
properly displays the default value as it is set in the
Table Designer.

You can drag and drop from a table or view in the
Data Explorer to the Form Designer to create a
grid. In the previous release it did not set the grid’s
RecordSource property, but in the Sedna version it
correctly sets the RecordSource to the table or view
name.

One obscure bug that Sedna fi xes occurred dur-
ing a drag and drop operation when you have a
bad fi eld mapping set up. Under normal conditions
you would set up the fi eld mapping via the Visual
FoxPro Options dialog or use the Environment
Manager in either the Task Pane Manager or run
standalone. These two tools enforce your selections

body { color: black;
 font-family: 'Trebuchet MS';
 font-size: 16px;
 background: white }
a:link { color: #ff8080 }
a:visited { color: #ff0000 }
a:active { color: #a05050 }
a.case1:link { background: green }
h1 { color: Purple;
 line-height: 30px;
 font-family: 'arial' ;
 font-size: 30px;
 background: white }
h2 { color: green;
 line-height: 20px;
 font-family: 'tahoma' ;
 font-size: 20px;
 background: white }
pre { color: black;
 font-family: 'courier new' ;
 font-style: bold
 font-size: 15px;
 background: white }

Listing 1: You can customize the output of the HTML by altering the cascading style sheet maintained in
the template code

LPARAMETERS loParameter

#DEFINE ccMSGBOXCAPTION "Data Explorer"

LOCAL lnLines, ;
 lnRow, ;
 lcDBC, ;
 lnDatabases, ;
 lcUpsizingWizard, ;
 lcOldDirectory

DIMENSION laOptionData[1]
DIMENSION laDatabase[1,2]

lcOldDirectory = FULLPATH(CURDIR())
lnLines = ALINES(laOptionData, ;
 loParameter.CurrentNode.OptionData)
lnRow = ASCAN(laOptionData, "DatabaseName=")

IF lnRow > 0
 lcDBC = SUBSTRC(laOptionData[lnRow], ATC("=",;
 laOptionData[lnRow]) + 1)
 lnDatabases = ADATABASES(laDatabase)
 lcUpsizingWizard = ;
 loParameter.oDataExplorerEngine.UpsizingWizardLocation

 IF EMPTY(lcUpsizingWizard)
 lcUpsizingWizard = HOME() + ;
 "Wizards\UpsizingWizard.app"
 ENDIF

 * Run Upsizing Wizard
 IF FILE(lcUpsizingWizard)
 lcUpsizingWizPath = ;

 JUSTPATH(lcUpsizingWizard)
 CD (lcUpsizingWizPath)

 * Run Upsizing Wizard with DBC name, the
 * name you want for SQL Server, and
 * indicate it is new
 DO (lcUpsizingWizard) WITH lcDBC, ;
 JUSTSTEM(lcDBC), .T.
 ELSE
 MESSAGEBOX("Could not fi nd Upsizing " + ;
 " Wizard, check options " + ;
 "setting location.", ;
 0+48, ;
 ccMSGBOXCAPTION)
 ENDIF
ELSE
 * Little problem, could not fi nd database.
 MESSAGEBOX("Database specifi ed was " + ;
 "not found.", ;
 0+48, ;
 ccMSGBOXCAPTION)
ENDIF

IF NOT EMPTY(lcOldDirectory) AND ;
 DIRECTORY(lcOldDirectory, 1)
 CD (lcOldDirectory)
ENDIF

RETURN

Listing 2: The script code found in the Data Explorer to run the new and improved Upsizing Wizard

The New and Improved Data Explorer

48 www.code-magazine.com

for the class and class libraries to exist. Some de-
velopers use a projecthook to set up the fi eld map-
pings programmatically when opening a project. It
is also possible you can set it incorrectly using pro-
jecthook code. You might rename a class or move
it to another library, or delete it completely and for-
get to correct this in the fi eld mapping settings. If
you have the fi eld mapping pointing to an invalid
class and drag and drop a fi eld from a table on to
the Form Designer in the previous version of the
Data Explorer it will cause errors to happen and in
some scenarios would even trigger the dreaded and
fatal C5 error. The Data Explorer now handles the
case of a bad fi eld mapping gracefully by displaying
a message (Figure 5) letting you know your fi eld
mapping needs to be corrected.

Prior to Sedna, the Data Explorer Browse form
would lose the grid columns if you tried to change
VFP data in the grid column based on auto-incre-
menting fi elds in a table (Figure 9). The Fox Team
corrected the root problem by making columns read-

only when the data is an auto-
incrementing data type. The grid
no longer loses the columns.

Options Dialog Box

Use the Options dialog box
(Figure 6) to confi gure different
option preferences and access
the different extensibility func-
tionality of the Data Explorer.
Enhancements to the Options
dialog box provide you more
customization so the Data Ex-
plorer works the way you want
it to work.

Sedna’s Data Explorer includes
a couple new features to display
Rushmore optimization details
so you can understand how
well optimized your VFP data
queries are when executed. The
Rushmore Query Optimization
Level (ShowPlan) setting on the
Options dialog box allows you
to select the type of optimiza-
tion checked when the Show-
Plan details are included. This
incorporates the proper param-
eter to the SYS(3054) function.
You may wonder why I didn’t
include parameter values 2 and
12 in the list. The functionality
to display the SQL statement
in the output is already includ-
ed. You only have to choose
between not displaying any
optimization results, displaying
Rushmore fi lter optimization
levels, or Rushmore join opti-
mization levels.

You can determine which Upsizing Wizard appli-
cation you want to integrate with the Data Ex-
plorer by selecting it via the ellipse button to the
right of the Upsizing Wizard textbox. This is im-
portant because you might enhance the Upsizing
Wizard and want to integrate with yours instead
of the one shipped by Microsoft. More and more
projects are showing up in open source efforts
like VFPX and there is the possibility the Fox
Community may extend the Upsizing Wizard in
the future and you might have several copies in-
cluded in your development toolkit. This provides
a lot of fl exibility for you, but you must ensure any
version you select runs with the same Applica-
tion Programming Interface (API) as the original
shipped by Microsoft.

You can also use the Options dialog box to change
the look and feel of the toolbar icons. You can
set the button style to display only the caption,
the icons only (with tool tip text), or with the
caption and the icon. You can select a checkbox

Update Shortcut Menu
Can Overwrite Your
Code Changes
If you update the Data Explorer
shortcut menu by restoring the
default configuration on the
Options dialog box you can choose
to save your connections and
enhancements you or a third-party
provider completed. Note that if
you made changes to Microsoft’s

Figure 5: If you do not have your field mapping set up with a valid class in a valid class
library you will see this message show up when you drag and drop a field on to the
Form Designer instead of a C5 crash.

Figure 6: The changes to the Options dialog box allow you to set Rushmore optimization levels, determine which copy of the
Upsizing Wizard you want to use, how the toolbar buttons look, and the option to back up the Data Explorer metadata table.

original functionality, restoring the
default configuration will reset to the
original Microsoft code.

For instance, I changed the behavior
of the Design option for VFP tables
and views to run the White Light
Computing ViewEditor instead of
the native View Designer. Each time
I restore the native functionality
I select the option to save my
connections and additions. It does
that, but restores the original code
for the Design feature and I need
to reset the code to work the way I
want it to.

I suggest that you create a backup of
the DataExplorer.DBF file using the
Options dialog box before you restore
the functionality. This way you can
get your customized code for the
native features and restore the code
overwritten during this process.

The New and Improved Data Explorer

49www.code-magazine.com

to enable hot tracking or not. By default buttons
have the caption only and don’t enable hot track-
ing.

The DataExplorer.DBF metadata fi le found in
the HOME(7) folder stores your connections,
many important settings, and all of the extensibil-
ity items you have included in the Data Explorer.
Including this folder and the DataExplorer.DBF
free table in your backup scheme is important if
you want to retain this information during a re-
covery effort after a hard drive crash. Occasion-
ally you should make a quick backup of this fi le if
you are making some risky changes to your scripts
or want to try out a new connection. With the
previous version of the Data Explorer you have
to hunt down the HOME(7) folder and copy the
fi le to a different folder or make a duplicate fi le
in the metadata folder. The Sedna Options dialog
box includes the Backup DataExplorer.DBF but-
ton to make a backup copy of the Data Explor-
er. VFP will back up the Data Explorer to a fi le
called DataExplorerBackup_XX.DBF, where XX
is a sequential number increased by one each time
you create a backup. You still need to ensure you
include the HOME(7) folder in your hard drive
backup scheme.

Run Query Dialog Box

In the Run Query dialog box (Figure 7) you can
interactively build and test queries for the connec-
tions you have set up in the Data Explorer. Sedna
includes several enhancements to improve your
productivity with queries.

Feature discovery is always a challenge for software
developers. You can expose a feature in your ap-
plication using a menu, a user interface object, and
keystroke combinations. One feature in the Run
Query dialog box is the Run button. If you use the
SQL Server Query Analyzer you are probably used
to pressing the F5 key to run the query. Most devel-
opers I have talked to about the Run Query dialog
box just click on the Run button and don’t think
about pressing the F5 key. The F5 hotkey is in the
previous version, but not frequently discovered by
developers using the tool. The Sedna version ex-
poses this for developers by adding it to the button
caption.

The output on the Messages tab (Figure 8) for the
result set now includes the Rushmore optimization
(via the ShowPlan) and record counts of the query
result set for VFP data.

Sedna includes two new query result add-ins that
create quick reports. One report shows results in
a form style (fi elds stacked vertically in the detail
band), and the other shows results in a column
style (fi elds horizontally positioned across the de-
tail band). When you click on one of the new quick
report buttons, VFP will prompt you to name the
report you want to create. The default report name
is DataExplorerQuickReport.FRX, but you can

name it anything you want and save it to any fold-
er you want. After you’ve saved the fi le, VFP will
open the report in the Report Designer. You can
use any of the features of the Report Designer (in-
cluding the menus and toolbars) to alter the report
to your liking. You can save the changes and close

Using Cascading
Style Sheets (CSS) to
Control HTML Output
for the Database
Documenter
I believe most developers have at
least dabbled in HTML and use
cascading style sheets to control
the look and feel of the HTML
rendering. The style sheet “code”
is straightforward. First you have
the style name, followed by the
attributes and settings for the
attributes in curly braces.

The CSS included in the Database
Documenter template has styles
set up for different HTML tags.
The body style is regular text in
the HTML between the <body>
and </body> tags. The pre style
is for the source code contained

Figure 9: You will not see this situation (grid losing the
columns) when browsing data using the Sedna version of the
Data Explorer.

Figure 7: The changes to the Run Query dialog box include additional query messages, some new query
result add-ins, and a few bug fixes.

Figure 8: The new messages on the Messages tab of the Run Query dialog box includes the number of
rows returned in the result set and the Rushmore optimization results.

The New and Improved Data Explorer

50 www.code-magazine.com

the Report Designer; VFP will display the report in
the Report Preview window and allow you to print
the report if you select a printer.

I like this new feature to create a quick report to
demonstrate a data problem to another developer
on my team, or even create a quick report for a cus-
tomer. I prefer this feature to the Copy Results to
Clipboard option which does not send the contents
of the memo fi elds to the clipboard.

Sedna includes two bug fi xes. Sedna fi xes an “Alias
not found” error if you clicked on any of the query
result add-ins when the Messages tab was visible.
In addition, prior to Sedna if you attempted to
explore a General fi eld in the result set grid the
Data Explorer triggered a “Field must be a Memo
fi eld.” error. The new behavior modifi es the Gen-
eral fi eld.

Extensibility Dialogs

The Data Explorer has three existing dialog boxes
to manage the extensibility options. I work with
Menu Manager and the Add-in Manager frequently
when I am writing a new Data Explorer feature. The
scenario is fairly typical of most developers writing
extensions. You open the Options dialog box, click
the button to open the extensibility dialog box, se-
lect the option you want to work with in the list,
click the script page, and then click Modify. It takes
fi ve steps altogether to edit the code, which is very
tedious if you want to test and debug the code in
rapid iterations.

Sedna reduces some of the tedious steps by letting
you double-click on the list. This brings forward
the Script to Run page. You can now right-click the
Script edit box to bring up your script in the pro-
gram editor. Overall you have fewer mouse clicks
and more importantly, you use your mouse less to
get to the program code editor.

Other Changes

Several dialog boxes (Run Query, Browse, View
Defi nition, View Stored Procedure) have some
changes to fonts to respect the font attributes you
selected in the Options dialog box.

David Fung posted a blog entry (http://weblogs.foxite.
com/davidfung/archive/2006/08/19/2275.aspx) with a fi x
for stored procedure sorting when the database uses
a Korean code page. Microsoft will include this fi x
in the Sedna version of the Data Explorer.

Wrap Up

Microsoft really has an impressive tool with the
Data Explorer. It is very fl exible and extremely ex-
tensible in true VFP tradition. I fi nd the Data Ex-
plorer easier to use than SQL Server 2000 Enter-
prise Manager, Query Analyzer, and the SQL Serv-

er 2005 Management Studio. Even better, it works
with native VFP data, SQL Server, Oracle, and any
data you can connect to with ADO. Sedna has nu-
merous enhancements and addresses some critical
bugs to make the experience even better.

Programmatically
Creating a Quick
Report
I believe most VFP developers
understand the idea of a quick
report in the context of using the
VFP IDE. Microsoft included the
ability to programmatically build
a report using the
CREATE REPORT command.

CREATE REPORT <rpt name>;

 FROM <alias/table/cursor> ;

 FORM

VFP will generate a report from
the data you identify with the
FROM clause of the CREATE
REPORT command. This means
it can be data direct from a
VFP table, or any query pulled
from any source including a
backend database. It does not
matter how it was created (direct
access, local or remote view,
CursorAdapter, or SQL Pass
through code).

The last clause of the REPORT
command (FORM in the example)
tells VFP to create a quick report
using the “form” layout. If you
want a columnar report you
substitute the FORM clause with
COLUMN.

The Data Explorer often
is easier to use than SQL Server

2000 Enterprise Manager,
Query Analyzer,

or the SQL Server 2005
Management Studio.

in the HTML. The a:link, a:visited,
a:active, and a:case1:link are
for the hyperlinks included as
a table of contents at the top of
the HTML. Finally the H1 and H2
are just the different headers
included in the output. You have
full control of the font name and
colors, sizes, and positioning. You
can even replace the template
with your Web site template or
HTML Help template if you want
to integrate the output.

You’ll find dozens of CSS help
sites available on the Internet.
I prefer a CSS editor called
TopStyle from Newsgator.
You can find more details about
this product at
http://www.newsgator.com/.

Rick Schummer

The New and Improved Data Explorer

Migration Headache?

For immediate relief,
visit

www.VFPConversion.com
today!

VFP Conversion is a migration services brand of EPS
Software Corp., providing expert upgrading of VFP
applications to the latest technologies available from
Microsoft. To learn more about how VFP Conversion can
assist your enterprise, call toll free: 1 (866) 529-3682.
info@VFPConversion.com www.VFPConversion.com

